

GENERATING FUNCTION OF LAGUERRE POLYNOMIALS

ABDULLAH ÖNER

Rodrigez formula for Laguerre polynomials is defined as

$$L_n(t) = \frac{e^t}{n!} \frac{d^n}{dt^n} (t^n e^{-t})$$

Evaluating the first three derivatives of $ws^n = e^{-t}t^n$ we get the following results:

$$\frac{d}{dt}(t^ne^{-t}) = nt^{n-1}e^{-t} - t^ne^{-t}$$

$$\frac{d^2}{dt^2}(t^ne^{-t}) = n(n-1)t^{n-2}e^{-t} - 2nt^{n-1}e^{-t} + t^ne^{-t}$$

$$\frac{d^3}{dt^3}(t^ne^{-t}) = n(n-1)(n-2)t^{n-3}e^{-t} - 3n(n-1)t^{n-2}e^{-t} + 3nt^{n-1}e^{-t} - t^ne^{-t}$$
Then

$$\frac{d^n}{dt^n}(t^n e^{-t}) = \sum_{k=0}^n C(n,k)(-1)^k t^k \frac{n!}{k!} e^{-t}.$$

Then we find

$$L_n(t) = \frac{e^t}{n!} \frac{d^n}{dt^n} (t^n e^{-t}) = \sum_{k=0}^n C(n,k) (-1)^k \frac{t^k}{k!}.$$

Hence we evaluate the generating function as follows:

$$\begin{split} \sum_{n=0}^{\infty} L_n(t) w^n &= \sum_{n=0}^{\infty} \sum_{k=0}^n C(n,k) (-1)^k \frac{t^k}{k!} w^n \\ &= (-1)^0 C(0,0) \frac{t^0}{0!} w^0 + \sum_{k=0}^1 C(1,k) (-1)^k \frac{t^k}{k!} w + \ldots + \sum_{k=0}^n C(n,k) (-1)^k \frac{t^k}{k!} w^n + \ldots \\ &= (-1)^0 \frac{t^0}{0!} [C(0,0) w^0 + C(1,0) w + \ldots + C(n,0) w^n + \ldots] \\ &+ (-1)^1 \frac{t}{1!} [C(1,1) w + C(2,1) w^2 + \ldots + C(n,1) w^n + \ldots] \\ &+ (-1)^2 \frac{t^2}{2!} [C(2,2) w^2 + C(3,2) w^3 + \ldots + C(n,2) w^n + \ldots] \\ &+ \ldots \\ &= \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \sum_{n=k}^{\infty} C(n,k) w^n. \end{split}$$

Let us observe the following identity

$$\sum_{n=k}^{\infty} C(n,k)w^{n} = \sum_{n=0}^{\infty} C(n+k,k)w^{n+k}$$

$$= w^{k} \sum_{n=0}^{\infty} C(n+k,k)w^{n}$$

$$= w^{k} \sum_{n=0}^{\infty} C(n+k,n)w^{n}$$

$$= w^{k} [C(k,o)w^{0} + C(k+1,1)w + ... + C(k+n,n)w^{n} + ...].$$

Consider the function $f(w) = \frac{1}{(1-w)^{k+1}} = (1-w)^{-k-1}$. The first three derivatives of f at 0 are $\frac{df}{dw}(0) = k+1$, $\frac{d^2f}{dw^2}(0) = (k+1)(k+2)$, $\frac{d^3f}{dw^3}(0) = (k+1)(k+2)(k+3)$. Then the Maclaruen series of f is

$$f(w) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} w^n$$

$$= 1 + (k+1)w + \frac{(k+1)(k+2)}{2!} w^2 + \dots + \frac{\prod_{m=1}^{n} (k+m)}{n!} w^n + \dots$$

$$= \sum_{n=0}^{\infty} C(n+k,n) w^n.$$

Then we conclude that the generating function of Laguerre polynomials for $\nu = 0$ is

$$\sum_{n=0}^{\infty} L_n(t) w^n = \sum_{k=0}^{\infty} (-1)^k \frac{t^k}{k!} \frac{w^k}{(1-w)^{k+1}}$$
$$= \sum_{k=0}^{\infty} (-1)^k \frac{\left(\frac{tw}{(1-w)}\right)^k}{k!} \frac{1}{(1-w)}$$
$$= e^{-\frac{tw}{1-w}} \frac{1}{1-w}.$$

REFERENCES

[1] JUNGHANNS PETER, Orthogonal Polynomials, Lecture Notes, Summer Term 2012

GENERATING FUNCTION FOR HERMITE POLYNOMIALS

BEKIR DANIS

GENERATING FUNCTION FOR HERMITE POLYNOMIALS

We know that the rodriguez type formula for hermite poylnomials is $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$ by taking s(x) = 1 and $w(x) = e^{-x^2}$ ($x \in [-\infty, \infty]$). This can be found in the book [1].

We define a function f as e^{-x^2} . This is just for convenience. $\frac{d^n}{dx^n}e^{-x^2} = f^n(x) = (-1)^n e^{-x^2} H_n(x)$. We know f is entire function so we can use the taylor series expansion of f at 0.

We write the taylor expansion of f(x+t) for any t.

$$f(x+t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} f^{(n)}(x) = \sum_{n=0}^{\infty} \frac{t^n}{n!} (-1)^n e^{-x^2} H_n(x)$$

By taking -t instead of t, we can get the following equation;

$$f(x-t)=\sum_{0}^{\infty}rac{t^{n}}{n!}e^{-x^{2}}H_{n}(x)$$

Multiplying both sides by e^{x^2} , we get the following;

$$f(x-t)e^{x^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x)$$

Remember that $f(x) = e^{-x^2}$. Thus, we have

$$e^{-(x-t)^2}e^{x^2} = e^{2xt-t^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x)$$

In last equation, $H_n(x)$ correponds $\frac{\delta^n}{\delta t^n}e^{2xt-t^2}$ at t=0 (From Taylor series expansion). Hence, we can get all $H_n(x)$ from this function e^{2xt-t^2} .

As a result, e^{2xt-t^2} is the generating function for hermite polynomials $H_n(x)$.

REFERENCES

[1] LOGAN, J.DAVID, Applied Mathematics, John Willey and Sons, Inc., New York 1997 (Second Edition)

MATH 543 BONUS PROJECT 1

CAN TURKUN

ABSTRACT. In this paper, we will obtain a generating function for Tchebychev Polynomials of the second kind, denoted $U_n(x)$, by the recursion formula they satisfy. The recursion formula will also be obtained.

1. Introduction

We know from the lecture that if $\omega(x) = \sqrt{1-x^2}$ and $s(x) = 1-x^2$ then the Rodriguez formula is

(1.1)
$$\frac{1}{w(x)} \frac{d^n}{dx^n} (\omega(x) s^n(x)) = U_n(x) \text{ for } n = 0, 1, 2, \dots$$

and

(1.2)
$$||U_n(x)||^2 = \int_{-1}^1 \omega(x) U_n^2(x) dx = \frac{\pi}{2} \text{ hence } ||U_n(x)|| = \sqrt{\frac{\pi}{2}}$$

Computing some of the polynomials by the Rodriguez formula we get

$$U_0(x) = 1$$

 $U_1(x) = 2x$
 $U_2(x) = 4x^2 - 1$
 $U_3(x) = 8x^3 - 4x$
 $U_4(x) = 16x^4 - 12x^2 + 1$
 $U_5(x) = 32x^5 - 32x^3 + 6x$

Thus, one can easily show that (by induction) the leading coefficient of $U_n(x)$ is 2^n and the coefficient of x^{n-1} is 0. That is, if $U_n(x) = k_n x^n + k'_n x^{n-1} + ...$ then $k_n = 2^n$ and $k'_n = 0$.

2. FINDING GENERATING FUNCTION

Let $h_n = ||U_n(x)||^2 = \int_{-1}^1 \omega(x) U_n^2(x) dx$ then $h_n = \frac{\pi}{2}$ for n = 0, 1, 2, ... also let k_n and k'_n is the same as above. Then we know from the lecture that $U_n(x)$ satisfy the following recursion relation:

(2.1)
$$U_{n+1}(x) - \frac{k_{n+1}}{k_n} x U_n(x) = a_n^n U_n(x) + a_{n-1}^n U_{n-1}(x)$$

where

$$a_{n-1}^n = -\frac{k_{n-1}k_{n+1}}{k_n^2} \frac{h_n}{h_{n-1}}$$
 and $a_n^n = \frac{k'_{n+1}}{k_n} - \frac{k_{n+1}}{k_n^2} k'_n$

Thus we have

$$a_{n-1}^n = -\frac{2^{n-1}2^{n+1}}{2^{2n}} \frac{\frac{\pi}{2}}{\frac{\pi}{2}} = -1 \text{ and } a_n^n = \frac{0}{2^n} - \frac{2^{n+1}}{2^{2n}} 0 = 0$$

Hence the recursion relation (2.1) turns into this recursion formula

$$(2.2) U_{n+1}(x) - 2xU_n(x) = -U_{n-1}(x)$$

Multiplying the recursion formula (2.2) by t^{n+1} and summing over n=1 to ∞ we get

(2.3)
$$\sum_{n=1}^{\infty} t^{n+1} U_{n+1}(x) - 2xt \sum_{n=1}^{\infty} t^n U_n(x) = -t^2 \sum_{n=1}^{\infty} t^{n-1} U_{n-1}(x)$$

By shifting the indices n to n+1 in (2.3) we get

(2.4)
$$\sum_{n=0}^{\infty} t^{n+2} U_{n+2}(x) - 2xt \sum_{n=0}^{\infty} t^{n+1} U_{n+1}(x) = -t^2 \sum_{n=0}^{\infty} t^n U_n(x)$$

Since the generating function is $g(x,t) = \sum_{n=0}^{\infty} t^n U_n(x)$ note that

 $g(x,t) = U_0(x) + \sum_{n=1}^{\infty} t^n U_n(x) = 1 + \sum_{n=0}^{\infty} t^{n+1} U_{n+1}(x)$ by shifting the indices and using $U_0(x) = 1$. Also,

 $g(x,t) = U_0(x) + tU_1(x) + \sum_{n=2}^{\infty} t^n U_n(x) = 1 + 2xt + \sum_{n=0}^{\infty} t^{n+2} U_{n+2}(x)$ by shifting the indices and using $U_1(x) = 2x$.

So we find $\sum_{n=0}^{\infty} t^{n+1} U_{n+1}(x) = g(x,t) - 1$ and $\sum_{n=0}^{\infty} t^{n+2} U_{n+2}(x) = g(x,t) - 2xt - 1$

putting these into (2.4) we get

(2.5)
$$g(x,t) - 1 - 2xt - 2xt(g(x,t) - 1) = -t^2g(x,t)$$

solving this equation for g(x,t) we get

$$g(x,t) - 1 - 2xt - 2xtq(x,t) + 2xt = -t^2q(x,t)$$

$$g(x,t) - 1 - 2xtg(x,t) = -t^2g(x,t)$$

$$g(x,t) - 2xtg(x,t) + t^2g(x,t) = 1$$

$$g(x,t)(1-2xt+t^2)=1$$

(2.6)
$$g(x,t) = \frac{1}{1 - 2xt + t^2}$$

Consequently, we find the generating function for Tchebychev Polynomials of the second kind, $U_n(x)$, which is shown as in (2.6)

$$g(x,t) = \sum_{n=0}^{\infty} t^n U_n(x) = \frac{1}{1 - 2xt + t^2}$$

GENERATING FUNCTION OF FIRST KIND CHEBYSHEV POLYNOMIALS

BURAK HATİNOĞLU

In this project we will find generating function of first kind Chebyshev polynomials by using the identity $T_n(x) = \cos n\theta$, where $x = \cos \theta$, $\theta \in [0, \pi]$ and $n \in \mathbb{N}_0 := \{0, 1, 2...\}$. So let us first prove this identity by induction. The Rodrigues formula of first kind Chebyshev polynomials is as follows:

$$T_n(x) = \frac{(-1)^n 2^n n!}{(2n)!} (1 - x^2)^{\frac{1}{2}} \frac{d^n}{dx^n} [(1 - x^2)^{n - \frac{1}{2}}]$$

First let us show the case n=0.

$$T_0(x) = (1 - x^2)^{\frac{1}{2}} (1 - x^2)^{-\frac{1}{2}} = 1 = \cos 0$$

Assume $T_n(x) = \cos n\theta$ for some fixed $n \in \mathbb{N}$. Note that $\frac{dx}{d\theta} = -\sin \theta$. Let us show for n+1.

$$T_{n+1}(x) = \frac{(-1)^{n+1}2^{n+1}(n+1)!}{(2n+2)!} (1-x^2)^{\frac{1}{2}} \frac{d^{n+1}}{dx^{n+1}} [(1-x^2)^{n+\frac{1}{2}}]$$

$$= \frac{(-1)^{n+1}2^n(n)!}{(2n+1)!} (1-x^2)^{\frac{1}{2}} \frac{d^n}{dx^n} [(n+\frac{1}{2})(1-x^2)^{n-\frac{1}{2}}(-2x)]$$

$$= \frac{(-1)^n 2^n(n)!}{(2n)!} (1-x^2)^{\frac{1}{2}} \frac{d^n}{dx^n} [x(1-x^2)^{n-\frac{1}{2}}]$$

Here we should observe the following identity.

$$\begin{split} \frac{d^n}{dx^n} [x(1-x^2)^{n-\frac{1}{2}}] &= \frac{d^{n-1}}{dx^{n-1}} [(1-x^2)^{n-\frac{1}{2}}] + \frac{d^{n-1}}{dx^{n-1}} x \frac{d}{dx} [(1-x^2)^{n-\frac{1}{2}}] \\ &= 2 \frac{d^{n-1}}{dx^{n-1}} [(1-x^2)^{n-\frac{1}{2}}] + \frac{d^{n-2}}{dx^{n-2}} x \frac{d^2}{dx^2} [(1-x^2)^{n-\frac{1}{2}}] \\ &= 3 \frac{d^{n-1}}{dx^{n-1}} [(1-x^2)^{n-\frac{1}{2}}] + \frac{d^{n-3}}{dx^{n-3}} x \frac{d^3}{dx^3} [(1-x^2)^{n-\frac{1}{2}}] \\ &= \cdots \\ &= n \frac{d^{n-1}}{dx^{n-1}} [(1-x^2)^{n-\frac{1}{2}}] + x \frac{d^n}{dx^n} [(1-x^2)^{n-\frac{1}{2}}] \end{split}$$

Hence

$$T_{n+1}(x) = \frac{(-1)^n 2^n (n)!}{(2n)!} (1 - x^2)^{\frac{1}{2}} \left\{ n \frac{d^{n-1}}{dx^{n-1}} [(1 - x^2)^{n-\frac{1}{2}}] + x \frac{d^n}{dx^n} [(1 - x^2)^{n-\frac{1}{2}}] \right\}$$
$$= \sin \theta \frac{(-1)^n 2^n (n)!}{(2n)!} n \frac{d^{n-1}}{dx^{n-1}} [(1 - x^2)^{n-\frac{1}{2}}] + \cos \theta \cos n\theta,$$

by our assumption and $x = \cos \theta$. Let us also observe the following identity:

$$\int \cos n\theta d\theta = \int \frac{(-1)^n 2^n n!}{(2n)!} (1 - x^2)^{\frac{1}{2}} \frac{d^n}{dx^n} [(1 - x^2)^{n - \frac{1}{2}}] d\theta$$

$$= \frac{(-1)^n 2^n n!}{(2n)!} \int \sin \theta \frac{d}{-\sin \theta d\theta} \left[\frac{d^{n-1}}{dx^{n-1}} [(1 - x^2)^{n - \frac{1}{2}}] \right] d\theta$$

$$= -\frac{(-1)^n 2^n n!}{(2n)!} \frac{d^{n-1}}{dx^{n-1}} [(1 - x^2)^{n - \frac{1}{2}}]$$

Therefore we get the following identity:

$$-\sin n\theta = \frac{(-1)^n 2^n n!}{(2n)!} n \frac{d^{n-1}}{dx^{n-1}} [(1-x^2)^{n-\frac{1}{2}}]$$

This identity gives us the result.

$$T_{n+1}(x) = \sin \theta \frac{(-1)^n 2^n (n)!}{(2n)!} n \frac{d^{n-1}}{dx^{n-1}} [(1-x^2)^{n-\frac{1}{2}}] + \cos \theta \cos n\theta$$
$$= \cos \theta \cos n\theta - \sin \theta \sin n\theta$$
$$= \cos(n+1)\theta$$

This completes proof, so $T_n(x) = \cos n\theta$, where $x = \cos \theta$, $\theta \in [0, \pi]$ and $n \in \mathbb{N}_0 := \{0, 1, 2...\}$. Hence for any n we have

$$Re(t^n e^{in\theta}) = Re(t^n \cos n\theta + it^n \sin n\theta) = t^n T_n(x).$$

It is natural to ask is this equality also valid for infinite sum, i.e. is the following equality valid:

$$Re(\sum_{n=0}^{\infty} t^n e^{in\theta}) = \sum_{n=0}^{\infty} t^n T_n(x)$$

where $x = \cos \theta$.

Let us find the value of the infinite sum on the left hand side.

$$\sum_{n=0}^{\infty} t^n e^{in\theta} = \sum_{n=0}^{\infty} (te^{i\theta})^n = \lim_{n} \frac{1 - (te^{i\theta})^n}{1 - te^{i\theta}}$$

where n goes to plus infinity, but this limit is finite only if -1 < t < 1. Hence take -1 < t < 1. Then we have

$$\sum_{n=0}^{\infty} t^n e^{in\theta} = \frac{1}{1 - te^{i\theta}}$$

$$= \frac{1}{1 - t\cos\theta - it\sin\theta}$$

$$= \frac{1 - t\cos\theta + it\sin\theta}{(1 - t\cos\theta - it\sin\theta)(1 - t\cos\theta + it\sin\theta)}$$

$$= \frac{1 - t\cos\theta + it\sin\theta}{1 - 2t\cos\theta + t^2}$$

where $x = \cos \theta$. Hence for -1 < t < 1 we get the following result and find generating function of Chebyshev polynomials of first kind.

$$\sum_{n=0}^{\infty} t^n T_n(x) = Re(\sum_{n=0}^{\infty} (te^{i\theta})^n) = \frac{1 - tx}{1 - 2tx + t^2} = g(x, t).$$

REFERENCES

- [1] CHENEY E.W., Introduction to Approximation Theory, Chelsea Publishing Company, 1982.
- [2] DENNERY P., KRZYWICKI A., Mathematics for Physicists, Dover Publications, 1995.

DEPARTMENT OF MATHEMATICS, BILKENT UNIVERSITY, 06800 BILKENT, ANKARA, TURKEY E-mail address: burak.hatinoglu@bilkent.edu.tr