GENERATING FUNCTION OF LAGUERRE POLYNOMIALS

ABDULLAH ONER

Rodrigez formula for Laguerre polynomials is defined as
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Evaluating the first three derivatives of ws™ = 7' we get the following results:
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Let us observe the following identity

i Cln, Byw" = i C{n + k, kyw"**
n=~k
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= ¥ Z Cln+k, k"

n=0

¢
=X"% Z Cln + k,n)w"”

n=0
= w*[C(k, 0)w® + Clk + 1, Dw + ... + C(k + n,n)w" + ...].

1

(1 w)k+
of f at 0 are L(0) =k+1, T4(0) = (k+ Dk +2), TL(0) = (k + 1)(k + 2)(k +3).
Then the Maclaruen series of f is

Consider the function f(w) = = (1 - w)™*"!, The first three derivatives
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Then we conclude that the generating function of Laguerre polynomials for v = 0 is
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GENERATING FUNCTION FOR HERMITE POLYNOMIALS

BEKIR DANIS

GENERATING FUNCTION FOR HERMITE POLYNOMIALS

We know that the rodriguez type formula for hermite poylnomials is H,(z)} =
(1) d‘inn * by taking s(z) = 1 and w(z) = e (2 € [~0c0,00]). This can
be found in the book [1].

We define a function f as e . This is just for convenience. o e == fr(g) ==
(—1)"e*" H,(x). We know f is entire function so we can use the taylor series expansion

of f at 0.

We write the taylor expansion of f({z + 1) for any ¢.

flat+) =3 2@ =3 Dy i, )
o o

By taking —t instead of ¢, we can get the following equation;

o =3 "
S

Multiplying both sides by €*°, we get the following;

[= o]

flo =0 =3 " ()
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Remember that f(x) = e~*". Thus, we have

e‘(w—t}2em2 . e2mt—1’2 Z th (’L)

G

In last equation, H,(x) correponds fe**- # at ¢ = 0 ( From Taylor series expansion).
Hence, we can get all H,(z) from this function gei=t?,

As a result, e2*% is the generating function for hermite polynomials H,,(x).
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ABSTRACT. In this paper, we will obtain a gencrating function for Tchebychev Poly-
nomials of the second kind, denoted U, (2}, by the recursion formula they satisfy. The
recursion formula will also he obtained,

1. INTRODUCTION
We know from the lecture that if w{z)=v1 — 2% and s(z)==1—z?* then the Rodriguez

formula is

1 a
w(x) dan

(1.1) (w(z)s"(z)) = Un{z) forn=10,1, 2, ...

and

kit

(1.2) (U ()] = f_ll w(2)U2(2)de = g hence [|Un{2)|} = 5

Computing some of the polynomials by the Rodriguez formula we get

Ug(’L) =1
Us(a) = d2? — 1
Us(z) = 8% — da

Uy(z) = 162* — 1222 + 1
Us(z} = 322° - 3223 4 62

Thus, one can easily show that (by induction} the leading coefficient of U, () is 2"
and the coefficient of z"™! is 0. That is, if U,(x) = k,2" + k2" + ... then k, — 2"
and k,, = 0.

2. FINDING GENERATING FUNCTION

Let h, = jU.(2)||? = f_llw(.?;)U,f(:v)d:r: then h, = 5 forn = 0, 1, 2, ... also let k,
and k; ts the same as above. Then we know from the lecture that U,(x) satisfy the
following recursion relation:

Ko
(2.1) Unar{2) — k“chn(fc) = @ Un(2) + " _ U,y (2)
1



2 CAN TURKUN

where

E

btk hy !“'n+1 - K1 ;

Tt n
a = and a” = ‘
n—1 K il N . n
k2 fin1 L k2
Thus we have
n—lon+l i n+1
al = —2—2—3 = —}and ¢« = — — 2—0 =10
n-1 22n ks n omn 22n
2

Hence the recursion relation (2.1} turns into this recursion formula
(2.2) Upi1(®) = 22U (2) = —Upn_1(z)

Multiplying the recursion formula (2.2) by #"*! and summing over n = 1 to oo we get

oo o0 o0

(2.3) Do Un(e) - 2wty U (x) = 2 "W, 4 (2)
n=1 n=1 n=1

By shifting the indices n to n + 1 in (2.3) we got

(2.4) D UL () - 20t () = ~12 > U, ()
n=0 n=>0 n={

Since the generating function is g(z,t) = > ,#"U,(2) note that

glz,t) = Up(z) + 2000 " Un(®) = 1 + > 02 4", () by shifting the indices and
using Up(z) = 1. Also,

g(z,t) = Up(x) + tUh(x) + 200, 7Un(w) = 1+ 22t + 307 (™20, »(x) by shifting
the indices and using U {a) = 2z.

So we find 3707 t" U, 0 (2) = gla,t) —1 and 300 (#2U, o(2) = gla, £) — 2t — 1
putting these into (2.4) we get

(2.5) g{@, t) — 1 — 22t - 2xt(glz,t) — 1) = —t2g(x, 1)

solving this equation for g(x,t) we get

glz,t) — 1 — 2at — 2xtg(x, t) + 20t = —t*g(x, )

gla,t) — 1 - 2atg(z,t) = —t*g(a,1)
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gla,t) — 2xtg(a,t) + tg(z,t) =1
gla,t)(1 — 22t + %) =1

1

2.6 1) = ———

Consequently, we find the generating funetion for Tehebychev Polynomials of the sec-
ond kind,U, (2}, which is shown as in {2.6)

gz, t) = Zt”U( ) =

2115 1 Qxf 442



GENERATING FUNCTION OF FIRST KIND CHEBYSHEV
POLYNOMIALS

BURAK HATINOGLU

In this project we will find generating function of first kind Chebyshev polynomials by
using the identity T),(x) = cosnd, where = cos8, 8 € [0, 7] and n € Ny := {0,1,2...}.
So let us first prove this identity by induction. The Rodrigues formula of first kind
Chebyshev polynomials is as follows:

(_1);12””! 2 % d" 2yn—3
—(L;;ﬁ!—(l—fb ) e [(1—=2%)"2]

iirst let us show the case n = 1.

T(z) =

To(z) = (1 — 2%)2 (1 — 2%)"% = 1 = cos0

Assume T}, (z) = cosné for some fixed n € N. Note that & = —sinfl. Let us show
for n 4+ 1.
(_1)n+i2n+l(n 1 1)[ 3 dn+1 il
T“PI‘FI(‘T) = (2;rl _|_ 2)! (1 - 332)2 dIL‘"_H [(1 - 3‘2) +2]

(ml)n+12n(n)| 2 !zz 1 WM

B S M =) (1 — 22
(_]“)RQH(H‘)i 1 d" n—i

B (2n)! ek %[’L(l B 3:2) ‘]

Here we should observe the follwing identity.

dr 1 PN gn-1 2 - Jqn-1 d -
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dnfl dn— 2 d2
— 1 _ 2 n—- e — Ft——
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Hence
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(_1)1!2::(?1)! B ‘2% dnfl P n—~ am

(—1R2%(n)! d* !
(2n)! Mg l

(12?3

Tzz+i($) =

= sin f 1-— 3;2)"_%] + cos # cos né,

by owr assumption and x = cosf. Let us also observe the following identity:

_ n2n | 1 d"
fcos-nﬂa’ﬁ x/(—gmg—n(l - 1‘2)2%;[(1 —132)’!_%]%‘
dn 1

B (——1)"2"?1.!/ . d
 (2n)! Smg—sm 0d9[d1 n—1
_(nrert gt 2yn-L

— (2;1)| — [( T ) ]

(I'(E” 1

[(1 = &?)"= 2]}

Therefore we get the following identity:

(“1)“2”?1! dnml
7
(2n)l dan!

—sinnd =

[(1 - 2% 4]

This identity gives us the result.
(-1n)m2n(n)! dt

(2n)! Mg
= cos f} cos nf — sin f sin ndl
= cos(n + 1)f

Thsr(x) = sind f(1— 3;2)"_%] + cos f cos nf

This completes proof, so T,,(z) = cosnf, where x = cos#, § ¢ [0,7] and n € Ny :=
{0,1,2...}. Hence for any n we have

Re(t"e™) = Re(t" cosnf + #t" sinnf) = 1"T,, ().

It 1s natural to ask is this equality also valid for infinite sum, i.e. is the following
equality valid:

Re(Zt” ") = Zt"T,,(z)

n=0

where 2 = cos #.
Let us find the value of the infinite sum on the left hand side.

oo
) 1 — (tezo)n

E 6 E i

2 theint — (tez )n -~ 111111 =

where n goes to plus infinity, but this limit is finite only if —1<t<1. Hence take
—1<{<1. Then we have
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oo
Z tnein{) — 1
1 - tei?

n=0
1
1—tecosf —itsinf
_ 1 fcosf+itsinf
(1 —tcos® —itsind)(1 — tcosf + itsin§)
_ 1—tcost +itsind
1 2tcosf + 12

where x = cosfl. Hence for —1<t<1 we get the following result and find generating
function of Chebyshev polynomials of first kind.

= Ead ; 11—tz
T, () = e\ = ————— — gla,1).
D T(a) = Re(} (1)) = =g — gle)
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