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In this paper we have obtained various operational formulas for the Laguerre
polynomials in the genecralized form. The results are obtained by intro-
ducing differential operator

0= it + 1 2,
dx

For J, =k =1 we get the operator considered by Al-Salam (1964); for
A = 0 we get the operator discussed by Chak (1956); and for A =0, k =
k — 1 the operator of Shrivastava (1974) is obtained.

In the sequel various properties of this operator, as they are needed in
establishing generating functions for the Laguerre polynomials, are
obtained. Bilinear generating functions for the Laguerre polynomials are
also obtained.

Our approach also results in obtaining a generalization of Hardy-Hille formula
as well as Weisner’s formula for the Laguerre polynomials.

1. INTRODUCTION

Operational formulas are being used in special function theory to obtain new
results or to give short proofs of known formulas, Burchnall (1941, 1951) asserted
that she could find a generating function for the generalized Bessel polynomials
only on account of the operational formulas. Al-Salam (1964), Gould and Hopper
(1962), Carlitz (1960), Singh (1965), Chatterjea (1963 a, b; 1964), Das (1967) and
Thakare and Karande (1973) gave operational formulas for the classical ortho-
gonal polynomials. Chatterjea (1966, 1968) and Karande and Thakare (1975)
also gave in the unified form the operational formulas for the classical ortho-
gonal polynomials, namely Jacobi polynomials, Laguerre polynomials and
Hermite polynomials and also for the Bessel polynomials. In their investigalion
all thesz authors use the operators D = d/dx andfor 6 = xD.
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Al-Salam (1964) investigated operational representations for the Laguerre
and other polynomials by considering tke operator 6 = x (1 + xD). Very recently
Srivastava and Singhal (1971) considered a class of polynomials defined by a
generalized Rodrigues formulas in which they used the differential operator 6 =
x*+1D, following Chak (1956). An operator 6 = x*D was also used to study
a generalized function by Shrivastava (1974).

In this paper we introduce a differential operator
0 = Ax* + x*+1D. (1.1)

It may be remarked that for A = k = 1, we get the differential operator coasidered
by Al-Salam (1964); for A = 0 that of Chak (1956).

The introduction of this operator leads us to generalization of many well-
known results for the Laguerre polynomials. In thecourse of our investigation we
obtain new operational formulas for the Laguerre polynomials, a new generating
function, a bilateral generating function for the Laguerre polynomials. It inci-
dentally also yields a different generalization of Hardy-Hille formula; such gene-
ralizations have also been given by Srivastava and Singhal (1971) and Carlitz
(1971).

2. GENERAL PROPERTIES

Let F(x) be a function which has a Taylor series expansion; then we have
the following formal shift rules for & given by (1.1):

FO) {x*f (x)} = x* F(0 + ax*)f (x) (2.1
FO){eo® f (x)} = &V F(0 + g’ (x) x*+) f (x). ..(2.2)
The proofs of these results follow by using the method of induction.

Again by induction we can prove that,

0" = xn f[ {xD+).+(J"'“l)k} ..{2.3)
i=1
o {300} — ko (oz +Ij + s) e w(2.4)

where ‘s’ is an integer, ‘ n’ a non-negative integer and a is arbitrary.

As a consequence of our approach we can also obtain a Leibnitz formula for
this operator which runs as

n 1O r
6" {x uv} = x* z (r) 6" v 0" . (2.5)
=0

More generally (2.5) also implies,
€l {x* uv} = x* (¢t v) (' u). ...(2.6)
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By using (2.4) we can show,

0 x5
& {x=+9} = (e ..{2.7
As a continuation of this we have the general identity
x® x
'0 == .~
(= f () = (= prmy@n f((1 — xk)w:)' (2.8)
In particular, we can write
e (f(x) = (1 — thx®)=M* f {x(1 — thxt)1%}, o (2.9)
The formula (2.4) also gives the general identity in terms of the generalized hyper-
geometric function which runs as s,
. r+ 4
oFu [EZ’S ’ t()]x’ = X" ,nF, [(“’)’ ([;) ’ th*] . ...(2.10)
a >

In a simijlar manner, we can also obtain

oD
[0 ] e > E
=0

(pq) s J
o+ A+rs,
X p+1F, [(“’)’ k ’ thk] (211
B) :

If we put A =0, u =— pu we obtain the result due to Srivastava and Singhal
(1971),

AL ]

0 a+rs
= x% z %“)' x'* ﬁ+1Fq [(a,)’ k ’ thk] . --'(2'12)
= B

The use of (2.4) could be made to write

1 — (=1 -
g = k'—(;:';r:q;) xma- (2.13)
k ’

where 1/6 is the inverse of the operator 0; here we have used the well-known
result,

Tl—a—n) (=1
ri—e @, -
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Now let us define the operator

d
. x k+2
¢ =+ (214

and thus by using (2.4) and (2.13) we obtain

: (Bt 4
1) ( k A yﬁuk

¢ .
( ) {x"“}_ o+ k — A+ 1\ xo+%1 " ..(2.15)
(),
Thus we have
) 2 .
F [( P) ! ¢ ]{ yﬁ ]
ota 9 x‘“lf
(ba)
. (,) [3 + 2 .
8 Tk ’ k
Yy ty
= x¢+”+1Fq+1 wtk — i+ 1 — . ...(2.16}
),
We have, in particular, for p = 1, ¢ = 0 the results,
d\ ( ¥f
(1-1%) 1o
B+ 4
yﬁ ? k tyl
:x¢+1 241 a+k___/':’+1 ""_.;k . ‘ ...(2.17)
k 3
o\ ( ¥F
(l ~ {x““}
W EYI
yE k ty*
= }a’a 2F1 a+k—i+1 - X¢ . ...(2.18)
k 2

(l B ’9) {xm} = (l + (2.19)

IfF()is a funcuon which has a Taylor series exparsion, the formula
(2.19) gives

——k-+A-1

(1-¢5) * oy

=x—=-1(1+ ) F{(kay } - (2.20)
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and using (2.13) we get

— " ; kX

e MO (x-a-1} = x-o-1 F [rx +1—a—k * ] . (2.21)
Tk

Also by (2.9) we have

1

eNf(D)fe(x)...} =[(1 — thx.)— f;{x(l __“;thk)-k}] .
=t ARy 2.22)

It is observed that the results from (2.1) to (2.22) give for A = k =] the results
of Al-Salam (1964). ‘

>

5

3. OpPerRATIONAL FORMULAS

In this section we obtain some operational formulas for the Laguerre poly-
nomials defined by

M"“(x)=g9‘——n+—,l—)'l1F1 [—nja+ 154]. (3.1)

The Rodrigue’s formula for these polynomials is
L@ (x) = r'TI' X% et D" (x%" e*). ...(3.2)

In order to arrive at the required result we put x* = u in our operator 0 = Ax* +
x¥+1 D, *Then we have, 0, = 0/k = (Alku + w2 D;) with D, = d/dy. This
can also be written as, 0; = u(A/k + ;) with 6; = uD,.

With this the formula (2.3) becomes

o — n (51+]2;+(j_1)), (3.3)
=1

And also the shift rules are transformed to

F(6y) {u*f (w)} = u* F (8, + o) () } (3.4)
FO){e'™ f (W} = e F(8;, + w*g" (u)f (u) S

with u = x*, 6, = 0/k, and these can be proved by induction.

We now get, with the help of (3.3), the following equivalent forms:
(o+)rw=w]] (6+f+i+i-1)rw (3.5
1 k \ 1 k k ] : sae .
J=1

* Added in Proof : The operator @, is essentially the same as the operator T, of Mittal, H. B.
[Glasnik Matematicki, 6 (1971), 45-53)
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o " Y o A,
(01'5',;““““2) cl=u 1—[(51+76—u+7€+1—1)~1 ...(3.6)

ja=3
. . 0
with # = x* and 61:=,;.

Proofs of (3.5) and (3.6) follow by induction.

The left-hand side of (3.6) can also be written as

o «
u ke 0r(uke™)f(u). ..(3.7
Recall the following result due to Carlitz (1960) :

n

H (xD —x+ a+j) Y———n!z ri‘x'bf,':,’(x)D' Y.
=0

i=1
This can be put in the form

n(al_ﬁ“_*_,i;"ﬂ-) Y

i=1

W etA=t
— ! adl
n! 7 !L'__: wbD Y. ..(3.8)

P=0

From (3.6), (3.7) and (3.8) we get the following identity:

atA=k

0 (ut e f @) =u"" e n !z L WD
»=0

(3.9
with = x*and 0, = g
The special case of (3.9) for f(u) =1 is worth noting
‘a a,, atA—b

o e)=u"ern L * (W), ...(3.10)

Or
) a+h—k
0" (x° =) = x® (kx*)" e®n!tL * (x). .(3.11)

The change of variables also leads us to

0" (x® eB) = x3 (kxt)* eF** | L?%"“ (Bx¥) . w(3.12)
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Similarly by a simple change of variable, (3.6) could te transcrited as

n

oo “ o .
(01 +ku—ﬁu2) S =u"n (51 - Bu+ ¢ +/i: +j— l)f\u).
j=1
..(3.13)
For f(u) =1, we get the special case

0+ ox* — fkx*y* - 1 =n! (kxk)" (ﬁxk) - wi(3.14)

Now to obtain the addition formula for Laguerre polynomials; put =1 and
n=m+ n in (3.14) and we have,

(0 + o — ka2)m" (1 = (m + )l (o™ L E - (x%)
= n ! (kx*)" (8 + (a + nk) x* — kx)m

oz+}.

n

Z(a:}tl)ﬂ )

=0 k

P

a+4 \m 40 ,z ( n), . _oinktpkdA—k
= (*37), W (oe+z Ry

We have thus obtained the addition formula for the Laguerre polynomials

(m + n) ! 2=k
. m!) L. &

afnkt-pk4A—k

a+z) Z(aun))’ XELR T (). - L(3.15)

Again from (3.10) we also have,
Gf‘{ui e "‘L k (u)} = {-1- Of(u%e‘“)):

! @ SHA—k
= w witm™tr o % (1),
n! . © o mn
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Hence

gm {x®4m e L:"',t‘—k ( xk)}

= +.n) (e xFy™ xo-m e—='~L I = ). -+(3.16)

We now consider the operator
o+ A
oFl[-; P —tﬂ]-

Cousider,
FA i 0] e

k ’

__1yp 4P
____Z ( al)+tl g (x247)

= x&tnk lFl[a+);{+nk;aZA; _thk]

n!
(=),

ALl e—tkakL (thvc)

Hence we get
oFl[___ ; o -;; 2‘ ; —_ t0] xd#nk
n! a-+ nk tiak e
(a T ¥ et L k (rkx) (3.17)
)

Similarly we obtain

1 I\ —a—1} - y—G-1 n! LF;!%::( f ;
( + é) et} = x e+ L —2+ky kx’f) ...(3.18)
G
and
A
OFI[_ ; “—7‘;— ; te] {x% (1 — x*)}
—c;
2k
th . ..(3.19

S USEC Y PRI
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If we put u = xB, v = x®¢** in Leibnitz formula (2.5) we get, by using
(2.4) and (3.11),

0" {x* (x* e=**) xF}

e S 0,

at+A—k
X (kx*¥y* (n — p) ! Ln_: (x*).
Again by (3.11) we can write
6" {x* (x* e~**) xF}
e B (e L ),
-
Hence
atptar—k + a4\
L = (x4} = S £+ 2 ) vy L & (x). ...(3.20)

p=

On the other hand, if we put u= x%e %", p=xFe?* in (2.5) and then
employing (3.12) as above, we get,

a+f§+2)\— o OTAE BAA—k
Ln ((a + b) x*) = Z 'Lp ko (ax¥) Ln_’; (bxF). «.(3.21)

»=0

It is remarked that the results from (3.5) to (3.21) give for A = k =1 the results
of Al-Salam (1964).

4. GENERATING FUNCTIONS

In this section, we shall obtain some generating functions involving Laguerre
polynomials.

Consider,

x® e"’k etkzk — Z (”;x:c)p

p=0

Operate 6™ on both sides, we then get the generating function

0
ot A=k (th)p  wtpkih-t
etkLmk. (x"—tk): ol Lm k

(x4). (4.1)

=0
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As a spgcial case, 1 =k =1, we get the generating function (Buchholtz 1953,
p. 142)

. @) = tr_atr
CL. (x—1) = z S . .(4.2)
p=y )

Next, operating €' on the expression x*¢**, we have

[ce]

ett {xa evml‘} = z 5 ' or {x“ 7,7»)

P=0

Applying (2.8) for left-hand side and (3.11) for right-hand side and putting
tk = ¢, we have

ECEDN = )\~k
(=) = CXP zf’L (®). ...(4.3)

In particular, for A = k =1, we get the familiar generating function

o0

l__xtt} = $ ”’L(:) (x). (4.4

(1 — 1) texp {

Similarly operating

Ry ]
.,Fl[ D ; 10

on both sides of

a+l

Z( .

it is possible to obtain the results (4.3). Lzt us consider

0F1["‘ 5 uzl; t0] x® e

x (1 —

a+)\ —k
— xo ot Z (g’:‘ PV A M (4.5)
Since we have the generating function
& Ak g A
z L (x© TJ:-_TI— = ¢ oFl[—- ; “—Zm ; — tx*:’ ...(4.6)

- (k)
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we obtain, on account of (4.5), the equivalent relation
OFI [ — “,Z)' ; t0] xe e—m’-’

a4+ A
k

= x% gt [ - . th%] . (4.7
If in (4.6) we replace ¢ by #$ and then operate on y*-* where
b=+ p Y
and by using (2.4), (2.8) we get,

Lukys Ca+ A — thx* y'
O A

atA—k
Z(“+A Lo Gk,

Replace tky* by ¢, then we obtain

e Loet+ A ook
1—-u0 1F1[C, e -—l_t]
a+)\—k .
—z a(i)"l L% ()1, ' (4.9)

In particular, for A=k = 1, we get

e 2! =0 = ihfe st - 2]

(o + 1), " 1 —1
} n=0
...(4.9)
5. BILINEAR GENERATING FUNCTIONS FOR THE LAGUERRE POLYNOMIALS
In this section we prove the following theorem :
Let
a+)\—k
F(x*, 1) = 2 at*L,* (x%) .(5.1)

where a, 0 be the given generating function. Then
a+X » ty‘
Q- = exp(—-———) [l—t ——_]_t]

a4 Ak
- Z B (=ML, * ()1, (5.2)
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where

b, (%) = z a, (:_%_E_L”ﬂ - Pk, ..{5.3)

P20

In order to prove the above theorem, replace ‘¢’ in (5.1) by thx* »*;
multiply both sides by x® e~* and then operate by €'¢ upon them to get,

e'0 {x* e~** F(x*, thx* y*)}

> BtAk
z (tky*y z -6" {xe:m e [k (XM} .59

n=0

On account of (3.16) the right-hand side of (5.4) becomes

[+ ] (=2}
" +
> whr > BOEDY o e ot L7 ()
p==y n=0
o0 n
a+h— —
— yo o 2 L () (rkoyr z a0 =1y,
n=0 P=0Q

Applying (2.8) left-hand side of (5.4) gets reduced to

cxp( ) [ x* thx'y* _-l
a— thk)# thk 1 —thx®’ 1 — thxt
Hence we have in view of (5.4)

ain thoxt t thoxtyt
(A — tho¥y exp(1 th)F[-——-_ _ ———l_t}:xk]

0

b Ak
= z b, ML, *

n=0

where b, (%) is given by (5.3). Replace tkx* by ‘¢’ and y* by — )* to get

e wr o ox
p— k& FC

=Zmﬁwﬁﬁmm

where b, ( — y*) will be given by (5.3). This completes the proof.
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As an application of this theorem, let

_ (&)
% (a+l
),
Thus F[Jﬁ'; :_’)f]
=71 T—1¢

ty —‘F o+ A 1y x* ]
— 1 11[ k ’(l—t)(l——t+yt)

Thus (5.2) becomes,

ta:k —€
(1 —0y 5% g 1—e(1 + 2

a+ A 1* x*
XIFI[ kK P =nd ~t+yt)]

- z b (= L () 17,

33 (g T e

Thus
atr _tsk
A=)~ %k e= (1 —t+ 8k

L+ A ty* x* ¥
XlFl[c’ F Pa—-nd —-t+yt)_|

0

=22F1[- o ,y"] L7 - (5.5

n=0

This result is a generalization of Weisner’s formula (cf., e.g. Rainville 1967 ’
p. 213) which can be obtained from our result if we put A =k = 1.

Al-Salam (1964) also obtains Weisner’s formula but it may be mentioned that
there are misprints in his result.

S
(oe+l)
k 9

If weselect q, =
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in (5.2) we shall get one more special case namely,

e 4 -
(-1 exp(—w opl[,«.owl. tykxh]

a—o Tk (1 —p
%0
_ n! L“"‘)‘_" L 2.
== <m5‘ Lk (y)L" ke (xF) ", ...(5.6)
n=0 k »

It we put 4=k = 1, we get Hardy-Hille formula: (See Rainvilie 1967; Al-
Slam 1964, pp. 135).

6. REMARK

It is remarked that in subsequent work we have studied the polynomials
P® (x,r,s,p,k,A) = x* er” On (x*+*" g") ..(6.1)
where
0= Ax* + x*+1 D.

This polynomial gives as a special case all the generalizations of the Hermite
and Laguerre polynomials.
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