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Abstract

The modified Mellin transform and its inverse on the spaces LGY,,
a > —1, as well as the modified Mellin convolution and its properties
over these spaces are investigated. The spaces LG,,a > —1, are in-
spected through the spaces of Newton’s series using an isomorphism
between them. Remarks are given on the domain of convergence of
some Dirichlet’s series. Finally, the modified Mellin convolution is ap-
plied in solving an integro-differential equation.
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1. Introduction

In the theory of integral transforms of generalised functions the monograph
of Zemanian [11] takes a remarkable place. In this monograph are presented
methods for constructing spaces of generalized functions which correspond
to the appropriate differential operators and integral transforms. The in-
vestigation of transforms is the most effective procedure for solving many
problems concerning partial differential equations and functional equations.
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Usually, it is the case that inversion formula cznnot be performed analyti-

cally and then suitable numerical techniques have to be found. There are a
number of related methods in use, such as [1], [5].

The Laplace and the Mellin transform are studied and applied in [6]
on the space of tempered distributions through the Laguerre expansions
of its elements. Some useful results are obtained. The properties of the
Mellin transform which concern the differentiation, and multiplication by =
are examined. Also given are two inversion formulas for the M-transform
which are important in operational calculus. The first inversion formula is
a new technique of inverting the Mellin transform using series of Laguerre
polynomials. This approach is different from that given in [11] which can be
considered as a distributional approach. It needs less operational calculus
than the generalised version of Zemanian.

In this paper the generalization of results of [6] for the spaces LG/, a >
—1, are given. This paper is organised as follows:

In the first part we shall give definitions of the spaces involved. Then,
we shall define the modified Mellin transform M, in LG, - spaces for later
use. In Section 4 we shall include the definitions of the modified Mellin con-
volution in the spaces LGy and LG, @ > —1. A new numerical method for
inverting modified Mellin transform is then detailed in Section 5§ where the
generalised function version of the inverse of the modified Mellin transform is
also given. In Section 6 is given the characterization of spaces LG.,,a > —1,
by using their isomorphisms with the spaces of Newton’s series N,. Remarks
on the convergence of Dirichlet’s series are given in Section 7. At the end,
we shall give an algorithm for solving an integro-differential equation which
uses the theoretical predictions given in Sections 3, 4 and 5.

2. Basic spaces

We shall consider the expansions of the spaces of generalised functions
LG!,,a > —1, with respect to the Laguerre orthonormal systems £, o, @ >
—1,n € No(No = N U {0}). When a = 0 we have the space LG}, the space
of tempered distributions with supports in R = [0,00) ([6]), known as the
space S5’,. Basic references for the space LGj are (2], [6], [7], [11]. For the
properties of the spaces LG/, we refer to [2], [7], (8], [9], [11].

We shall repeat some basic properties of the spaces LG/, and its most
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important case LGj ([11)).

Let @ > —1. The generalised Laguerre orthonormal system in L?(R})
is given by

b o(t) = 12 L2 (1), t € Ry,

where 7, = (I'(n 4 1)/T(n + @ 4+ 1))/2, and L&(t) are generalised
Laguerre polynomials, defined by

n _tm
IHOEDD ( nta )(m)! ,t>0,n € No.

n—m
m=0

The functions £, ,(t) are eigenfunctions for the operator

Ra = t=o/2et/2Dto+1e~tDt=2/2et2 RE = RE = Ra(REY), k € No, RS is
the identity operator, and the corresponding eigenvalues are A, = —n,n €
No.

The spaces LG, are the spaces of all the smooth functions ¢ € C*°(R,),
such that for every k € No, the seminorms || ¢ |lx =||RX ¢ |2 =

1/2
( I |'R,§¢)(t)|2dt) / , are finite, and for every n € Ng and every k& € Ny,

(R<’;¢7 ln,a) = (¢7R§£n.a)7 Where (¢$ ¢) = (¢, i[;) = f°°¢(t)12’(t)dt:¢:¢ €
L*(Ry).

The following relation between the spaces LG, is given in [7].

LGa = 2°/?LGo = { € C®(Ry4); % = 2/2¢ for some ¢ € LGo} .

We shall repeat some equivalent definitions for LGy:

(i) LGo= {¢ € C®(R,); su;a |z* U (z)],r € No} < oo [10].
z€

LkLr

(i) LGo= {¢ € C°(Ry); sup |z*¢p0)(z)|,r € No} < oo [7].

IER.+

k,j<r
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Note that L?*(R;) = LGj.
Let k € Ng,a > —1.Lj o is the space defined as follows:

Lk,a = {¢ = z an,aen,a € L2(R+); ”'ﬂb”k,a < OO} ’

n=0
where

0o 1/2
l8lle,a = (Iao,al2 + Ian,alznz") ;

n=1
I3 — — > . 1
Lio= f= Z bn,oln,a — formal series, ||f||x < 00,

n:O

1/2
where [Ifll% = (lboal® + T3y baal?n=2) .

Obviously, spaces Lg, and L} , can be defined for k¥ € R. Note, for
k> O,L;C,a = L g,
LG, = proj lim Lg,, LG, = ind lim L} .
k—oco k—oo 7

The connections between the spaces Ly, and Lipo,k € R, and conse-
quently between LG, and LGy are given in the next proposition.

Proposition 1. Let k € R,a > —1. Then

Lyo = z"ﬁLk.o = {:p EC®Ry);p= z%/2¢ for some ¢ € Lk,o} .

Proof. Let ¢ = 330 0 n,alna € Liq- From ([3], p. 192(39))
L3(2) = Somo(L/m)(T(m + 6)/T(@)) Lu-m(2)s 7 € Ry, we have

o o] o o)
g~ p = Z name "2 L2(z) = E anotne /2

n=0 n=0

n

- 3" 1/mYT(m + @)/T(a)) Ln-m(z) =

m=0

-3 (i ra(1/n)(T(n + a)/r<a))an+m,a) e

m=0 \n=0
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oo
[l

Let b = Y20 m(1/n)(T(n + @)/T(a))antmasn € No. We have to
prove that 3%°_; |bm|?m? < co. By Cauchy’s inequality

i m?* (i Tu(1/n)(T(n + a)/r(a))lan+m,a|2) <C i m?* i Ta(1/nl)-

m=0 n=0 m=0 n=0

Jtntmeal® =C i (1/n!) i [@ntm,el(n + m)*(m/(n + m))* < oo.

n=0 m=0

So we prove if ¢ € Li,, then .1:‘“/2(,0 € Lio. By using the formula
La(z) = T mr(—a)m LE_,,(2), ([3], p-192(4)) similarly as above we can
prove if ¢ € Ly o then z2/2¢ € Ly .

((a)o =1,(—a)m = (-~a)(-a+Dl...(~ra+m~1),me N). O

Define the space H, as follows:
Ho = {¢;¢ = e'/zzla(t) for some ¥ € LGQ}

with the topology generalised by the norms || || o, % € No,a > —1, defined
by
¢llka = sup t*|(e™*2¢/24(1)) ).
teRy

1<k

This sequence of norms defines the convergence structure in H,.

Let the sequence ¢, belong to H,. Then ¢, — 0 in H, iff there exists
a sequence ¥, in LGy such that 9, — 0 in LGy and ¢, = /24, n € No.

Thus, (Ha, || - ||£,a+ k € Np) is an F-space.

Put Hi, ='{e‘/2¢;1,b € Lk,a} ,k € R, and transport the convergence
structure from L, to Hy o.

We have:

Mo = proj lim My e, M., = ind lim H.,
k—o0 k—oo

LG, = {e“/z(p; pE ’Ha} ,

A duality argument gives the following proposition:
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Proposition 2. We have H/ = {e-“/zf;;" € LG:,};
Lio={e"f;if €My} k€ No.
Proof. If f € LG/, then et2f e H!, and conversely, via the dual pairing

3, (e £(2), d()r. =1a, (f(1),e" ()1, =

=ra (12 f(t),e*17°¢(t)) Gy, ¢ € Ha-

The second assertion follows similarly. O.

Note that for Res> k,t — t*~1,t € Ry, belongs to Hy g, and ¢t — t°‘/2+’—1,
t € Ry, belongs to Hxa,k € R, (Hi o = 2%/?Hy ).

3. Modified Mellin transform

We present the modified Mellin transform in LG,,a > —1.

Let  ,4(t) = (1/T(s + a))t*/2e~t/?t*-1t € Ry,
and

Dy sz = {s € C; Res > k + (1 - a)/2},
k € R. Then the mapping

(1) s = (Mo f)(8) = (f(2),0s,a(t))s s € Dios2,

is the modified Mellin transform (hereafter refered to as MMT) of an f €
ko k €ER.
k,a?

The expansion of ¢, o with respect to the generalised Laguerre orthonor-
mal system is given by @, 4 = Y a0 @n,alna, Where a, o = (@s5.a(t),no(t))

= (-1 ( =1 ) rayn € No. ([1], p-32).

Since |anq] < Cn~(Restal2) n 5 ny(s,a),C = C(s,a) [6], we have
¢so € L2(Ry) if Res > (1 — @)/2 and ¢, o € Li o if Res > (1 — )/2 + k.

Proposition 3. The mapping s — ¢, is a holomorphic mapping from
Dk,a/2 into Lk’a,k € Np, a > —1.
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Proof. Since Ry¢s,a = (8- 1)(¢s-1,as —¥s,a), by similar arguments as in [6]
it is easy to show the assertion of Proposition 3.0

Similarly as in [6] we have

Proposition 4. The mapping s — @54 from Dy o9 into Ly ok € R, >
—1, is holomorphic.

Now we shall introduce the Null-Mellin transform in #., by following the
method of Zemanian. ([11], Ch.4.).

Since for Res> k,
R>3t—t*** ' € Hp ot € Ry, (k€R)
the definition which is to follow is correct. The mapping
s = (Maf)(s) = {f(),t/2*71), Res > k,

for an f € Hy, is Null-Mellj_n transform. When a = 0 we obtain the
Zemanian Mellin transform (Mg f)(s) (with our modification).

The relation between these two transforms is given in
Proposition 5. For an f € LG!,,Res > k,

(Ma(e™*2f))(5) = T(s + a)(Ma(f))(s)

Proof. If f € LG’, then e~*/2f(t) € Hj}, o> for some k € R, and for
Res > k )
(Male™2f))(s) = (™2 f(2),1°/%¢7) =

= {f(t), e 2t*/2*7Y) = T(s + a)(Ma(f))(s). O

The properties of MMT are given in

Proposition 6. Let s € Dy o0,k €ER, and f = 37 bn ol €
€ Ly ,- Then

(iMallno))(s) = (-1)" ( s ; 1 ) Tn, 1 € No, (we take ( S B 1 ) =1);
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(h) (Morf) (3) = ibn,a("l)n ( g .T; : ) Tn-

n=0
This series converges absolutely and uniformly in Dy ,/,.

(iii) The following holds :

(Ma(D))(s+1) = =(s+ a/2)/(s + @) (Maf) (8) + § (Maf) (s +1);
(Ma(tf)) (s = 1) = (s + a = 1) (Maf) (s);

(Ma(temt2(emt2£))) () = —(s + @/2) (Maf) (s);
(Ma(te™2(e™21Y)) (s) = —(s = 1+ @/2)/(s + a = 1) (Maf) (s = 1);
(Ma(Raf))(5) = (s = 1) (Maf) (s = 1) = (Maf) (5)).

Proof. (i), (ii) folows from ([1].p.32). Since
s—1
n

this series converges in Dy ,/. (iii) follows from the definition of the MMT.
a

—Res

<en ,Tn < 7% n € No,

Remark. Let us note that (Myf) is also defined for s € Ng and s <
k+ (1—a)/2 by

(Maf)(s) = ibn,a ( 8;1 )(-—1)"1'ﬂ (wetake (g ),( —01 ) - 1)
n=0

4. Modified Mellin convolution (MMC)

For generalized functions which are Mellin’s transformable ([11]) there exists
the Mellin convolution ([11}).

In this section we shall give for MMT the analogues for the theorems of
Zemanian ([11}, p.151-156).

First, we consider the modified convolution over the elements in the
spaces LG}, and LG/, separately.
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Proposition 7. Let © € Ho. Then for g € Hy,

(=) = (9(v),0(z - y)), = € Ry,
belongs to Hy.

The modified Mellin convolution is defined as follows.
Letf,g € LG}. Then, by

(2) (fV9,0) = (f(2)e™™/2, (9(y)e™¥/?,0(z - ¥))), © € Ho,
the modified Mellin convolution (MMC) of f and g is defined.

Proposition 8. For f,g € LGy, f Vg € M.

Proof. 1t follows from Proposition 7, because e~=/2 I, e~*/2g ¢ Hp.-

Proposition 9. Let f € LGy, g € D(Ry). Then

3) fVg={f(z)e7*?,e*(1/z)g(y/z)),y € Ry,
in D'(R,). (This means that for every @ € D(Ry),

(f v 9,0) = ((f(z)e™*/%,e79/*(1/2)g(y/2)), O(z))-

Proof. By substitution of variables (2) can be expressed as

(fV 9,0) = (f(z)e~=/%, (e7¥/**0(y),(1/z)g(y/z))).

O

117

The supports of e~¥/22@(y) and (1/z)g(y/z) have the intersection in a com-

pact subset of the open quadrant R X R.
Then (2) has the form

(f(z)e==2,(B(v)e™v/*, (1/)g(y/=))) =
= (f(2)e™** ® O(v), (1/2)g(y/x)e™*/*?),
where ® denotes the direct product.
From the commutativity of the direct product we have
(f Vv 9,0) = (B(y), (f(z)e~/?, e ¥/**(1/2)g(y/=))),

which implies the assertion. O
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Proposition 10. Let f,g € LGj. Then, (for s belonging to the domain
which depends on f and g)

(4) Mo(F V g)(s) = (T(s))*(Mof)(8)(Mog)(s)-
Mo(e™=/*(f V 9))(5) = T(s)(Mof)(s)(Mog)(s)

Proof. Mo(f V g)(s) = (f Vg,2") = (f(z)e™*/?,
(9(w)e 2, (z9)* 1)) = (f(2)e /2, 2* ) (g(p)e /%, ") =
= (T(s))* (Mo f)(s)(Mog)(s). O
Proposition 11. Let f,g € LG}, then
(5) Mo(f V g)(s) = Mo(e™? f)(s)Mo(ge™*/?)(s)-

Proof. 1t follows from (4) and Proposition 5. O

The MMC has the following properties over the generalized functions in
LGy:
i. Commutativity: Mo(f V g)(s) = Mo(gV f)(s).
ii. Associativity: Mo((f V ) V R)(s) = Mo(f V (g V h))(s).

We shall introduce the MMC in the spaces LG/,,a > —1. The arguments
are very similar to those for the space LGy given in the previous part. Here
we shall only quote the necessary changes to be made in the arguments given
there.

Using the relations between the spaces: LG', = 2~*/2LG}, [7], and Hq
2°/?Hy we have

Proposition 12. Let © € H,. Then for g € H.,
#(z) = (9(v), O(zy)z™%), z € Ry,
belongs to Hp. »
Let f,g € LGY,. Then for © € H,,

(6) (fVa9,0) = (f(2)e ™22, (g(y)e /242, O(zy)(zy)~*/?)
is the MMC over the functions in LGY,.
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Proposition 13. fV,g € H,, for f,g € LG.,.

Proposition 14. Let f € LG!,,g € D(R4). Then

) f Va g = (f(2)e™?, g(y/z)(1/z)e %)
y € Ry, in D'(Ry), i. e. for all @ € D(Ry),

(f Va 9,0) = (f(2)e™*/2, (g(y/2)(1/z)e /%, 0(y)))-

Proposition 15. For f,g € LG', (and s in a suitable domain)
Ma(f Va 9)() = (T(s + @) (Maf)(s)(Mag)(s)-

Ma(e*(f Va 9))(5) = T(s + a)(Maf)(s)(Mag)(s)

In particular when o = 0 we obtain ().

Proposition 16. Let f,g € LG!,. Then,
Ma(f Va 9)(8) = Ma(fe=/?)(s) Ma(ge™?)(s).

For a = 0 we have (5).

The MMC over the elements in LG/, has the properties of commutativity
and associativity.

5. Inversion of Transforms

We shall give two inversion formulas for MMT. Firstly, we give the gener-
alised function version of the inverse of MMT. Secondly, we give a numerical
inversion of MMT using the series of generalised Laguerre polinomials ap-
propriate for applications.

If f e LG, then ther_e are m € Ny and a continuous function of slow
growth F with suppF C R, such that

f = x—-a/2F(m)



120 S. Pilipovié, M. Stojanovié

in the s=nse of dual pairing
16, {f,9)16a = (=P F™, ) = 16 (F™), 27220y 5,

where ¢ € LG, and z7%/2p € LG,. ([7]).
Let F,F',...F(™ € L' ;r > 0. Then, f € L}, for s € D, 11 o/2-

I'(s—m)
—moa = A Ly R a-
Ps , 11(‘g —m+ O!)<P, m,0 € L'r,

We choose s € D,y a/2-
(Maf)(s) = (f(1),¥s,a(t)) = (F(m)’t_a/z‘Ps,a) =

( 1) —~1 s—-1\(m)\ _
“Term e =

F((s :_)7;)( (®), E ( ) (_%)m— (s=1...(s- j)t-’—.‘i—le—tﬂ) -

- r((s 1+):,)(‘ >‘"‘Z ( ? )(_2)1.(3_1)'”(3_3_)/0@ =312 P(1)dt.

3=0

Thus, we have

_o-m_L(8) < jMo(Fe~=/?)(s - j)
(Maf)(s) =2 r(s+0)2( )(2) ORI

3=0

Proposition 17. Let f,€ LG, and (M,f) be defined on Dy o0k > 0,
then there is 09 > k+ (1 — @) /2 such that for all ¢ > oy,

e=/?
[ 0 + @) (Ma e,z 202 —

- (f,(ﬁ),‘l' — 00,9 € D(0,00)

Proof. Since f € LG', then f = z~*/2F(™), where supp F C Ry and F is
slowly increasing.
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Take og € R such that for some k > 0, Res> 00, 9s—m, € Lo, F, F', F”,
...Fm) e L} o; then ©,_mm o/2 € Lo, f € Ly ,. If Res> oo then for e > 0

g4ir . c
o [ Ro(F ()Y (s - e Nds P

(see [6]). We have

) F(z)e ™ *,r > o0

;c/2 otir
lim( = / + I(s + a)(Maf)(8)z~%ds, z7%/2¢(z)) =

a—ir

27t Joir

::/2 -—a/2¢($)) -

,11.%'02""2( j )( G2y < [ ta( Pl (s-)e~-ds),

2me o—3r

JLI&(T'"E( j )( [ (am1) . (a5 Mo Fe )= )",

.-r:/2 —a/2¢($)) —

3 g+ir  _ .
rli.rgo 2'"‘2 ( p ) =2y 2) Mo(Fe~/?)(s — j)z~ (=) ds,

i=0 27t o—ir

(€227 /24(2)))y = lim 2‘"‘2( p )( -2y < F(z)e~*/?,

r—00
=0

j=o \ 7

(/2 z=/2g(z))D) = Z ( " ) (é)m' (e *I*F(z)e™?)™), z=*/2¢(z))
| = (F™(z),z7**(z)) = (z7*2F™)(z), §(z)) = (f, ).

and so the Proposition is proved. O

Now, we shall give the numerical inversion formula.

Proposition 18 Let s € Dy o2,k € Ry, and f = 320 0bnolno € L ,-
Then the inverse of MMT is given by

(8) f(#) = 2_(-1)"A*MafH)1)(1/Ta)ln 0

n=0
where A" are the finite differences, n € No, where, for s € Np,s < k+(1-—
a)/2 the values of (Mqf)(s) are determined in the Remark at the end of
Section 3.
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Proof. From Proposition 6 (ii) we have

(=1)"bpoTa = A (ML f)(1) =

) i(_l)n—m ( :; ) (Mof) (m +1),n € No, ([4],.325)
m=0

and

boa = (—1)"(1/m) AN Maf)(1). O

6. The space of N,-transforms, o > —1.

Denote by N, the space of all the Newton series of the form

= n s—1
Fa ENQ i=4 F - 2(_1) bn,aTn( n )7

n=0

where 322, |by o|2n"2% < oo for some k& € R. The abscisa of the common
and absolute convergence of F' are denoted by Ar and ur respectively.

Proposition 19. M, transform is an algebraic isomorphism between the
spaces LG!, and N,.

Proof. 1t follows from Proposition 6. O
In particular, when a = 0 we have the mapping LGj « Ny. (See [6]).

By using the connections between Newton’s and Dirichlet’s series we
obtain:

HFa = n]-i_{goln Z Ibk,aTkI/ln N, HFa > 0,
k=0

and
n

LFa = n]er;oln,‘Z beoTel/inn, pra <0.
=0

All of the above enables us to inspect the spaces LG!, through the spaces
of all the Newton series.
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Propoéition 20. If f € LG, and F = (Mqf) is defined by (1), then the
following holds:

(i) fE€Ly =k pra+(a—1)/2;
(ii) fELio=k<pratal2;
(iit) k> pra+a/2= f€ Lig;
(iv) k<prat(a-1)/2=f¢ L,

Proof. All the above follows from the fact that if f € L}, , then s € Dy o/,
and (M, f)(s) converges when Res> &k + (1 — a)/2.0

For more details see [6].

7. Remarks on Dirichlet’s series

Let
(9) f()-—z(-i-l)z ReZ)p.,

p=0
be Dirichlet’s series whose abscisa of absolute convergence is 4 € R and let
o>
Consider the formal series

ad ape—(p+l/2):za/2

(10) g(z)=)_ G

p=0

,z > 0.
Put b, o = {(9(z),%na(z)). Then by using ([1], p.9) we obtain

400
ma = T Z <o+ 1)«- / e PHe g L3 ()ds =

_ - ap T y "
_,,Z:%(p+1)"(1/ ")(p+1 ) '

Since, 1/7, ~ n%/2,n — co,we have

[baal < Cn*/? and g(z) € L, ,,7 > (1 + a)/2.
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MMT is then

(11) (Mag)(s) = E

p=0

ot 1)o—l+a ,Res >+ ((1-a)/2)

So with z = ¢ + s — 1 we get that f(z) = (Myg)(z — ¢ + 1) converges
absolutely for Rez—o +1> r+ (1 —a)/2i.e. for Rez> p+r—(1+a)/2. If
g€ L;,,m<(1+a)/2,and f(z) converges absolutely for Rez> p, then f(z)
converges absolutely for Rez> p + r — (1 + a)/2. This result generalizes the
corresponding one from [1].

8. Solving integro-differential equations via MMC

In this Section we shall give an application of the inversion formula given
in Proposition 18. and the operational calculus from Sections 3. and 4. in
order to show its possibilities from the numerical point of view.

Consider the equation
(12) 2f'(z) + 1z &/ / ¢~ f()dt = h(z)
z/2

along the initial condition [§° f(t)e~*/2dt = A, where h € LG} is known,
and A is a given constant.

For appropriate A the solution of (12) belongs to L?(R+).

Assume that this holds. In solving this equation we use the following

Proposition 21. If f,g € L(R) and suppg is a compact subset of R,
then

0o e—t/ e—z/2t
(13) vore) = [TLIOTE s pyat,z e v,

Proof. (13) follows from Lebesque’s theorem and Proposition 9. O
Setting
etl?
g(t) = —H(t -1/2)H(1-1t),t e R,

(H is Heaviside’s function) equation (12) gets the equivalent convolution
form



The modified Mellin transform and convclution 125

(14)  zf'(2) + e*/*(f V g) = h(z),z € Ry

Applying MMT(M,) from Proposition 10. and 6. we obtain the difference
equation

(15) ~sF(s)+ F(s+1)/2 + T(s)F(s)G(s) = H(s),

where
(Mof)(s) = F(s),(Mog)(s) = G(s),(Moh)(s) = H(s).

Since (Mcf)(1) = F(1) = A, one can find all the coefficients of f(z),n >
2, in the simplest case of the numerical inversion formula (8):

co

(16) f(z) = D _(-1)*"A"F(1)n o

n=0

Then, (16) is the solution of our equation (12).

2
Note, if f Z %2 0 @nolno then

g
f - E an,Oen,O

n=0

o0

= Z |a,,'o|2.

La n=ng+1
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REZIME

MODIFIKOVANA MELINOVA TRANSFORMACIJA 1
KONVOLUCIJA

Uvedeni su pojmovi modifikovane Melinove transformacije i konvolucije na
prostorima LG!,a > —1. Osobine ovih prostora u odnosu na navedene
pojmove omoguéavaju odgovarajuéi operacioni ra¢un koji je na kraju rada
i primenjen na resavanje jedne integro-diferencijalne jednacine.
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