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1. INTRODUCTION

This is the second in a series of papers intended to develop the theory of
the umbral calculus. We shall assume familiarity with Sections 1-5 of the
first paper, hereinafter denoted by UCL.

In UCI we studied a certain class of polynomial sequences, called Sheffer
sequences, by studying the dual vector space P* to the algebra of
polynomials P. First we made P* into an algebra—the algebra of formal-
power series in t. Sheffer sequences were defined as those sequences in P
which are orthogonal to some geometric sequence g(¢)f(£)* in P*

<g(t)f(t)k|sn(x)> = Cnan,k'

The degree requirements deg g(t) =0 and deg f(¢) = 1 were placed in order
to ensure the existence and uniqueness of the sequence s,(x).

Our present goal is to extend the theory to a more general class of
sequences in P* than the class of geometric sequences. This will bring some
important new polynomial sequences into the purview of the umbral
calculus. We shall call elements of this new class decentralized geometric
sequences.

Let us illustrate with a simple example. Recall that if ¢, = n! for all n > 0,
then the evaluation functional ¢,(¢) is the exponential series e/,

€| p(x)) = p(»).

Now if yg,y,,.. is a sequence of independent transcendentals (variables),
then one decentralization of the geometric sequence ¢¥ is the sequence e”*¢*,
The intuitive reason for this is that

(| p(x)) = p™*(0)
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and

(e¥t"| p(x)) = p* (3))-

In words, one decentralization of the sequence “kth derivative evaluated at
0” is the sequence “kth derivative evaluated at y,.” Now the sequence x” in
P is orthogonal to the sequence t*,

(*|x"y=n1d, 4.

Thus, one decentralization of the sequence x" is the sequence G,(x)
satisfying

<eykttk| Gn(x)> = n!én.k
or rather,
G () =nd, -

The polynomials G,(x) are known as the Goncarov (or Gontscharoff)
polynomials and are of considerable importance in the theory of inter-
polation. Thus, the umbral calculus may be extended to include the
Gonéarov polynomials. Another important polynomial sequence which we
shall incorporate in this way is the sequence

Su(x) = (x —yo)x—y,) -+ (x=¥,0)

Up to now we have been using the algebra of formal power series in a
single variable to study the dual vector space P* and hence also the algebra
P. We have come to a point in the development of the umbral calculus where
it pays to reverse this point of view. Accordingly, we devote a section of this
paper to the study of the algebra of formal power series in a single variable
by thinking of formal power series as linear functionals on P.

2. DECENTRALIZED GEOMETRIC SEQUENCES

To fix our terminology we shall let P be the algebra of polynomials in x
and # be the algebra of formal power series in ¢, both over the base field K
of characteristic zero. We let ¢, be a sequence of nonzero constants. The
algebra .# represents the set of all linear functionals on P as well as certain
set of linear operators on P—this by means of

<tk|xn> = cnén,k
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and

t*x" = (c /e, ) X"
The details may be found in UCI.
We would like to remind the reader of an extremely useful result.

LemMa 2.1. If degf (t)=k and (f,(t)|p(x))=0 for all k>0, then
p(x) = 0. Similarly, if deg p,(x) = k and (f(t)| p,(x) > =0 for all k > 0, then
S()=0.

Suppose

YorVis Yy and ZosZys 2y

form a set of independent transcendentals (i.e., variables). Let K be the
quotient field of the algebra of all formal power series in these transcen-
dentals over a base field C. We need not concern ourselves with a precise
description of K. Our only concern is that K is a field. It is critical to the
theory to assume that the constants ¢, lie in C and, hence, are independent of
the transcendentals. For any integer k we define the function S$* on K which
shifts the subscripts of the transcendentals. Thus,

Ky _ k, _
SYi=Vii i Sz, =2z;,,.

Notice that S"yj is not defined if & +j < 0 and we shall be careful to avoid
such a contigency. Now suppose f(¢) is a series in .#. Then for k > 0 we
shall write S¥/(¢) as f(t; k). For uniformity we may write /(¢) as f(t; 0). To
put it in words, f(¢) may involve some transcendentals in its coefficients.
Then f(t; k) is obtained from f(¢r) by adding k to the subscripts of these
transcendentals. We adopt a similar notation S*p(x)=p(x;k) for
polynomials in P.
A decentralized geometric sequence in # is a sequence of the form

ht) =gt K)f(1:0) - f(t5k— 1), ho(t) = g(1: 0),

where g(f) and f(¢) are in .#. Whenever g(¢) and f(¢) do not involve the
transcententals the sequence #,(f) reduces to a geometric sequence in .#.
We shall have frequent occasion to use the fact that

SKSO1px)) = (S ()| S*p(x)) 2D

and

SO px)] =[SOS p(x)] (22)
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whenever all expressions are defined. In particular, if (f(¢)|p(x)) is
independent of the transcendentals, then {f ()| p(x)) = {f(; k)| p(x; k)) for
all k> 0.

3. DECENTRALIZED SHEFFER SEQUENCES

As usual by a sequence p,(x) in P we imply that deg p,(x) = n. Recall that
a delta series f(¢) in .# is a series satisfying deg f(¢)=1 and an invertible
series g(¢) is a series satisfying deg g(¢) = 0.

THEOREM 3.1. Let f(t) be a delta series and let g(t) be invertible. Then
the identity

(8t K)F(E0) - £tk — Vs, () = ¢,5,, @3.1)
Jfor all n, k > 0 determines a unique sequence s,(x) in P.

Proof. Since degg(t; k) f(0) - f(t;k— 1)=k the sequence g(t; k)
Sf(&0) - f(t; k— 1) forms a pseudobasis for # and the proof is virtually
identical to that given for Theorem 5.1 of UCIL

We will call the sequence s,(x) the decentralized Sheffer sequence for the
pair (g(),f(t)), or more briefly, we say s,(x) is decentralized Sheffer for
(8(0),f(1)).

THEOREM 3.2 (The expansion theorem). Let s,(x) be decentralized
Sheffer for (g(t),f(t)). Then for any h(t) in #,
& ()]s, (x
mo= 3 LD 500 pi k- 1),
k=0 k

Proof. We simple apply the right side to s,(x) to obtain {(A(¢)|s,(x)). An
application of Lemma 2.1 completes the proof.

COROLLARY 3. Let s5,(x) be decentralized Sheffer for (g(t),f(t)). Then
Jor any p(x) in P,

p= Y (g(t: k)5 0) --C-f(t; k—Dlp(x)) 5.
k>0 k

(x).

We now give an operator characterization of decentralized Sheffer
sequence.
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THEOREM 3.3. The sequence s,(x) is decentralized Sheffer for
(g(0).f (1)) if and only if
(1) <g(t)|sn(x)> = cnan,O
(2) S(0) su(x) = (cn/Cp 1) Su_1(x5 1).
Proof. Suppose s,(x) is decentralized Sheffer for (g(¢),/(¢)). Then Eq.
(3.1) for k=0 gives (1). To prove (2) we have for k> 1
(gt k) St 1) - [t b — 1) f(1;0) 5,(x))
= Cnan.k
= (cn/cn—l)cn—lan—l,k-l
= (cnfen K8k —1)f(1:0) - St k= 1)|s,_1(x))
= (co/Cu 1 8L KL 1) - fts k= 1)]s,_ (x5 1)).
Thus, by Lemma 2.1 we must have f(#;0) s,(x) = (c,/c,_,) s,_(x; 1). For
the converse suppose (1) and (2) hold. Then
(8BRS (5:0) -+ f(ts k = 1)]s,(x))
= (Cn/Cn KB KV (5 1) - f (65 k= D)5, 1 (x5 1))
= (Ca/Cn1) S Gt k= 1) f(50) - ft5 k= 2) |5, _1(x))

and continuing in thc way we obtain
(CafCui) SC&(1;0)]s, k(X))
= (cn/cnfk) Skcn—kén,k

=¢,0, 4

This completes the proof.

We now come to the decentralized Sheffer identity.

THEOREM 3.4. A sequence s,(x) is decentralized Sheffer for (g(t),f(t))
Jor some delta series f(t) if and only if deg g(t) =0 and

n

E(05,6)= Y —— 54(3) (1 ) 5,_4(x: k) (3.2)

k=0 “k n—k

for all y in K and for all n > 0.
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Proof. Suppose §,(x) is decentralized Sheffer for (g(),f(t))- The
expansion theorem for A(f) = £,(t) gives

0= 3 20 gk 0) Sk =)

=0

Applying both sides of this to s,(x) and using Theorem 3.3 and Eq. (2.2)
gives the Sheffer identity. For the converse we define the linear operator T on
P by

Ts,(x) = (CafCp1) Saoa(i 1), Tsx) =0 (3.3)

Now since the left side of (3.2) is easily seen to be symmetric in x and y we
have

5= S @G0, sk G9)

k=0 “kbn—k

where the subscript y indicates that the operator g,(t: k) acts on y. From
(3.4) we obtain, for y in C,

n Cn
Te (1) s (x)=T > 5.(x) 8,(t; k), _i (V3 k)
k=0 C1Cn—k
n Cn
=Y — s (3 1) gy (5 6) s,il¥3 6)
k=1 Ck—1Cn—k
n—1 ¢
=N s s D gk + 1) s, (13 K)
k=0 CxCn_k—1
n—1 c
=S' n 5 (%) g, (6 k) S,y a (Vi )

k=0 CkCn—k-1
= (cafCu1) S'e,() 5,1 (%)
=(c,/Cn_1) E,1) S, _1(x3 1)
= g,(f) Ts,(x).
Thus, Te,(t) =¢€,(0) T for y in C. By Corollary 2 to Proposition 4.1 in UCI
we deduce the existence of a series f(¢) in # for which T =f(t). Since s,(x)

is assumed to be a sequence in P the definition of T implies that f(¢) is a
delta series. Equations (3.3) and (3.4) imply

n

e 8y = & S () 750) o (5= )3

k=0
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Since this holds for all n > 0 we have
5osi(y)
b0=3 2 k7w 0) - fk - 1)
k=0 k
Applying these linear functionals to s,(x) gives

éo (gt k) f(£50) - f(t; k — 1)|5,(x)) 5.()

Cy

Sn(y) =

and comparing coefficients of s,(x) gives

<g(t’ k)f(l, O) f(ta k— 1)|Sn(x)> = Cnén,k
which concludes the proof.

The reader may recall that a polynomial sequence s,(x) satisfying the
binomial identity

st )= X () s05,40)

k=0

has been termed a sequence of binomial type. Setting c,=n! and
g(t; k)= e’ we find that (3.2) becomes

n1 n
SRS g P RREEEAT)
k=0

One sees the justification in calling this the decentralized binomial identity.

4. COMPUTATION OF DECENTRALIZED SHEFFER SEQUENCE

In order to derive formulas for the computation of decentralized Sheffer
sequences we are required to make some slight extensions in the theory. Let
JS(£) be a delta series. Then f(¢) has no multiplicative inverse in #. Thought
of as a formal Laurent series, however, f(¢) has a multiplicative inverse,
denoted by f~'(¢) and satisfying

ST O= o

We shall require the use of the linear operator f~'(f) on P defined by
extending the definition

X" = (c,fe, ) X"
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for all k > 0 to include

t lxn = (cn/cn+l)x"+l'

To be absolutely clear, if £ 7'(f) =Y, a,t* then

o)
STOx"= ) a Xt

We shall also require the use of the linear functional £~ '(¢). In this case we
set
(¢ x")=0

for all n > 0. Thus we have

o= v atlx,).

k=0

where we have simply dropped the term involving ¢~ '. If g(¢) is in .# the
expression {g(¢)f '(¢)|x") is evaluated by first taking the formal product
g()f () before dropping any terms involving ¢ '.

THEOREM 4.1. Let f(t) be a delta series and let g(t) be any series in .# .
Then

(gL 7HO1x") = (g f~ (e} x").
Proof. By linearity we need only observe that
| X"y = {1 X"y forallm k >0.

THEOREM 4.2. Let f(t) be a delta series and let g(t) be any series in .7 .
Then as linear operators we have

g)yof 1) =g f (1),

where the left side is composition of operators and the right side is the
product of formal Laurent series.

Proof. This follows readily from the fact that ¥ ot~ 'x" = /*~'x".
Notice that since the product is commutative we have

g) o f O =g)f (O =/""(1) g

Caution must be exercised, however, since £~ '(¢) o g(t) =/ ~'(¢) g(?).
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We can now derive our first formula. Let f(¢) be a delta series and let g(¢)
be invertible. For all integers k > 0 we define the linear operator J, on P by

Jix" =F NG k) x" = (e g ) gt k) .S (15 k)| x™),

where g, is the constant term of g(z; k).

THEOREM 4.3. Let s5,(x) be the decentralized Sheffer sequence for

(8(1).S(1)). Then
s(x)=(c,/co8) oo J 0 0d, 1,

where by JyoJ o ---oJ, |1 we mean the composition of the operators
JosJyses Ju_ applied to the polynomial p(x)=1. If n=0, then
Joo +-olJ,_, is the identity operator. Again g, is the constant term in
g(t; n).
Proof.  The result is clear for n = 0. Since deg f(t; k) > O we have
SO k) o Jyx™ =f(t:k) o f 71t k) x"
— (1/co )8 k).f =1 (E k) x") f (15 %) 1

=[5 k) o f 1(t; k) x"

= x"
and so

ftk)oJ, =1 (4.1)

Also, since deg g(t; k) = 0, Theorem 4.1 gives

(Gt D x" > = (gt k)| f 71t k) x™)
— (1/co 8:) &t k).S =1 (8 k)| x") g(t; k)| 1)
=gt k)Tt k) x") — (gt k) f (8 k)| x)
=0. 4.2)

Therefore, for k < n, Eq. (4.1) implies

(8 k) f(50) - f(ts k — V)| (cp/co8u) Joo -+ 0, 1)
= (Ca/Co 8 8WE RNtk —1) -+ f(1;0) 0 Jgo +ov 0 d,_| 1)
= (c./co &) 8 k)T 0 o0, _ 1), (4.3)

If k<n, then (4.2) implies this equals 0 and if k=n we get
(c./cog,){g(t:n)|1)=c,. In either case we have c,d,,. From degree
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considerations it follows that (4.3) equals ¢,d,, for all n,k>0. This
completes the proof.

We may derive another formula for decentralizated Sheffer sequences. Let
S(t) be a delta series and let g(¢) be invertible. We define the linear operators
H, on P by

Hy=(g(t;0) "¢t
and for k >0
H, = (g(t:k—D)/g(t; k) /(15 k= 1).
We denote the leading coefficient of the series H, by 4,.
THEOREM 4.4. Let s,(x) be the decentralized Sheffer sequence for
(8(1).f (). Then

sn(x)z(cn/co)hnHooHlo...OH 1’

n—1

where if n =0, then s,(x)=h,.

Proof. Let us write p,(x)=(c,/c,) h,Hyo -+ o H, |1 and verify the
conditions of Theorem 3.3 for p,(x). Again, we denote the leading coefficient
of g(t; 0) by g, and the leading coefficient of f(¢; 0) by f,. To prove part (1)
of Theorem 3.3 we have for n > 0,

(&(t: 0)[ p,(x)) = (&(t; 0)[(cn/co) hyHy o - o H, 1)
= (g(t;0) Hyl(c,/co) hyH o -0 H, 1)
= <t71|(cn/c0)hnH1 O eee OI_In—l 1>:O

and for n =0,

(8(80)| po(x)) = (&(£; 0) | o) = ¢ 8o 1y = .
To prove part (2) for n =1 we have
S(6:0) py(x) =1 (8 0)(c,/co) hy Hy 1
= (c1/co) hy(&(t;0)) ™" (f (1 0)/1) 1
= (c1/co) i (/o/80)
= (c1/cq) S'po(x).
For n > 1 we first observe that

S'H,=H,.,
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for k> 1 and by Theorem 4.2

f(:0) 0 Hyo Hy =f(£;0) 0 (g(0)) ™" t7" o (g(1;0)/g(t; 1)) f (5 1)
= (&(5:0))™" (f(£0)/1) o (g(1; 0)/g(t; 1)) £~ (5 1)
=(g 1) ¢7!
=S'H,.
Therefore,
J(#0)s,(x) =/ (5;0)(c/co) hyHyo Hyo -0 H,_ | 1
= (Cp/Ch_1)(Cp_1/Co) Slh,,_,SlH0 oS'H o o S'H, ,1
= (Cw/Cn_1) S'D,_4(x).

This completes the proof.

5. THE CrassicAL UMBRAL CALCULUS

The term classical umbral calculus will refer to the case
c,=n!

for all 7> 0. In this case the operator ¢* is the ordinary kth derivative and
the linear functional ¢* is the kth derivative evaluated at O.
The evaluation functional €,(¢) is the exponential series e/,

€' p(x)) =p(»).

Therefore, the product of evaluation at y with evaluation at z is evaluation at
y+z,

vt ,zt

eVt = eVF

The operator e is translation by y,
e”'p(x) = p(x + ).

The expression ¢,/c;c,_, becomes the familiar binomial coefficient (%) and
the decentralizer Sheffer identity is

Salx +y) = kzﬂ (Z ) s(V) gt k) s, (x; k).
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The Goncarov Polynomials
Let us take
g)=e
and
f@o=t
Then the decentralized geometric sequence for ( g(¢), f(¢)) is
h(t) = e’k

where
(Dl p(x)) = p“ (3))-

The decentralized Sheffer sequence for (e”, t) is the Goncarov sequence. We
shall soon see that the nth Goncarov polynomial involves only the transcen-
dentals y,,..., y,_; and we shall use the notation G,(x; y,,.... »,_,) for the nth
Goncarov polynomial.

From the definition we have

G (Y1 Vs Yu1) =116, 4.

Theorem 3.3 characterizes the GonCarov polynomials by

Gn(yo;yov'-’ y,,‘l) = 5’,'0
G:l(X;yO""’ yn_1) = nG,,_l(X;y,,...,yn_l),

The decentralized Sheffer identity gives

G, (X + V5V Vu_1)

o/n
=2 (k ) Gi(73 Ygseees Vi) G ilX + Vi3 Vierens V)

k=0

which is a new identity for Goncarov polynomials.

As a application of the expansion theorem we expand the polynomials
xG,_ (X3 Vyses¥,_y) in terms of G, (x;yqs., V). Corollary 1 of
Theorem 3.2 gives

XGy 4 (X3P 1seens V1)
— i <eyk'tk|xGn—l('x;y1 geeey yn—1)>
k=0

k! Gk(x;yOP--aynfl)'
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But recalling that (f(¢}|xp(x)) = {f'(¢)| p(x)) we have
<eYk'tk|XGn—l(x;y19""yn71)>
= <(eykttk)/'Gn-I(X;yl’""yn‘l)>
= <ykeykttk + keykttk71|Gn—l(X;y“-"’yn—l»
=0 =10, G (Vi3 Viy 1905 Y1)
+k(n— 1)y Gy (Vi3 Visors Y1)
=2 =1 Gy (Vi Vi 19ees Y1) + 116, 4
and so
n;l n— 1
XG (X3 1 3ees V1) = Gl X5 Yogoeus V1) + Z ( k )yk
k=0
X Gy Vi Vs 1900 Ve 1) GulX3 Ygoeees Vi 1)-
This result is due to N. Levinson, for use in obtaining a bound for Whit-
taker’s constant.

A formula for the Goncarov polynomials may be obtained from Theorem
4.3. In this case f '(t; k)=1¢"" and so

Jx"=1t71x"— (e x"
k
=+ )7 x| x")

— (’l + 1)—1 xn+l _ (I’l + 1)—1y}r(1+1
= | " dt.
o
From this follows the usual formula

- tho1
G063 Yy o) =11 | dtlj dzz-nL dr,.
n—1

Yo ¥

If the difference operator 4, is defined by 4, p(x) = p(x) — p(y) and if we
suggestively write :~' as D~' we have

Jix" =4, o D7'x"
and so J, =4, o D~'. Thus,

G (X3 Yorrr Vp_)=nld, oD ' oriod, oD7'1
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Theorem 4.4 gives a different, and apparently new, formula for the
Goncarov polynomials. We have

Hy=e 2!
and for k> 1
Hk — e(yk_l*yk)tt—ll
Then

Gn(x;yow-,y,,_,)=n!e‘y°‘t‘1 o e(yo—y,)tt—l O ves

° e(yn—z_yrhl)tt_ 1

If we denote the translation operator e*’ by T,, then we obtain (with ¢’
written as D~ ")

Gl Yoros Vo) =mT_, oD ' o T D 'o...

o]
Yo—¥1

oT oD,

Yn—2—Yn—1

A generalization of the Goncarov polynomials is obtained by taking
g(t)=e”" and f(f) to be any series which is independent of the transcen-
dentals. The decentralized Sheffer sequence for the pair (e**, f(¢)) satisfies

(e () [s4(x)) = 113, 4.

In other words, s,(x) is the sequence of interpolation polynomials for the
sequence of linear functionals &, () o f(¢)*. From Theorem 4.3 we have

Jex" =70 x" = (T O)|x")
=4, of "' (D)x"

and so

s(X)=nld, of\(D)o-0d, of D)L

From Theorem 4.4 we have the alternative formula

Sn(x) = (n'Zfl) T—yo ° D71 ° Tyo—yl ofvl(D) Q0 Ty,,Az—y,,,l °f¥l(D) L

Wit
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6. THE NEWTONIAN UMBRAL CALCULUS

The term Newtonian umbral calculus will refer to the case

c,=1
for all n>0. The operator ¢ is multiplication by x '

n n—1
xX"'=x )

where 71 = 0.
The evaluation functional is the geometric series

%O‘ k. k 1
g)= ) yit'=——
Y o 1—yt
and so

1
1 —yt

| p(x)) =p().

The operator &,(t) = (1 — yr)~" satisfies

oe] n xn—l _yn+l
€ (t) x" = xn — 3 ykthn — \‘ ykxnfk —
Y 1 —yt o Ko X—=y

and so
xp(x) —yp(y)
T———p(x):_(—(_.
—yt x—y

Thus, the decentralized-Sheffer identity becomes

Mi—_fn(_y): ,;0 si(¥) gt k) s, (63 k).

Let us compute the decentralized Sheffer sequence for ((1—y,t)" ", ¢).
From Theorem 4.3 we obtain in the usual way

sn(XQyow-’yn—l):Ayo °oXo... OAYk—l ° X1,

where X is the operator multiplication by x. This sequence is the Newtonian
analog of the Gonéarov sequence. It satisfies

<8yk(t)lX*ksn(x; yO""’ yn—l)> = 5n,k

and
X718, Yormrs Vi 1) = 8 (X5 V1 suees Vu— 1)s

where of course X *x/ =0 if j — k < 0.
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Notice that the delta series tg,(¢) = t/(1 — y¢) satisfies

{ n__ 1 n—1 _ xn_yn
l—ytx _—l—ytx T ox—y
and so
(t/(1 = y)) p(x) = (p(x) — p(¥))/(x — ») (6.1)

which is the first divided difference of p(x).
The kth divided difference of a polynomial p(x) with respect to a sequence
¥, is usually defined by a recurrence (see, e.g., Davis |4]| or Hildebrand [5])
Plyol =p(y,)
plyesyil=(plyol = p[¥:)/(¥o— 1))
PLYores Vel = (PLYoros it ] = PLY s i) (B0 = 20

We are now in a position to describe these divided differences directly. We
begin by observing that

plyol= <1_yt ‘p(X)>
and
Plyos il =1 =y, ) ' = (L =y,07")/(yy = »)| p(x))
t
=(q ) "’(")>
and

(t/(1 =y )1 =y, ) — (t/(1 =y, )(1 — ;1)) ‘p(x)>

p[yo,yl,yz]—< [

2
~ (T 7))
The pattern is now clear. The decentralized geometric sequence
h(0) =€, (6) tey () -+~ te, () =1"/(1 = yot) -+ (1 = py)
has the property that
s ()= () = S"By D)/ (70 = )

and since {(h,(t)| p(x)) = p[y,] we deduce that

<(1 —3o0) tk ) ‘P(x)> =D Yoseer Vi )-
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Notice that h,(¢) is the decentralized geometric sequence for g(¢)=
(1= 700) ™" = 2,(0) and £ () = 1/(1 — yo1) = 15, (0.

Naturally we want next to determine the decentralized Sheffer sequence
for (1 —y,t)~', t/(1 — y,t)). In order to use Theorem 4.4 we compute

Hy=(1—y)t7'=t""—y, =X —y,,
where X =t~ is the operator multiplication by X. Also, for k > 0,

_ L=yt 1=yt _
1=y, qt !

p =yt =X—y,.

Thus the decentralized Sheffer sequence for ((1 —y,t) ', t/(1 — y,1)) is
T3 Voserns V1) = (X = Vo)l =) = (X =)
Thus, from the definition of }decentralized Sheffer sequence
T Voseos Vil = 0 i

Theorem 3.3 characterizes 7,(x;yy,...,7,_;) as the unique polynomial
sequence for which

Tl Voo Vn—1) = 5;1,0
and

(X5 Y seers Vo 1) — Tu(Vo'3 Vg reees Yo 1))/ (X — Yo)
=Ty (X5 V1 s0es V1)
It is interesting to notice that

x">= D <J;k)y"<t"”|x”>

j=0

(i)

= (e 01D

and so r*/(1 —yt)**! is 1/k! times the kth derivative evaluated at y. We may
use this result to handle the case of confluent transcendentals. In particular

suppose y, =y, = --- =, for j < k. Then using (6.1) we have
(et
p[y()’yl""’ykfl]:<(1 -y t)"'(l—y t) p(x)>
0 k—1
] pe=i=1

v
B <(1 *.Vot)j+1 (1 _yj+1t) e (L=ypqt) P(X)>

= (1/j1e, (1 Dp[%, ¥y 15mees Vicoa D)
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It is worth taking special note of the case of two transcendentals,

p(y)—p(z) < t
y—z (1 —=yt)(1 —zt)

Now we would like to set y =z, which can be done in the right side and
gives

p()

t

—_— = D .

(5 | 79 )= @122

Thus, we haved passed from the difference quotient to the derivative in a
purely algebraic manner, requiring no use of the limit! This brings up many
interesting questions about a purely algebraic polynomials calculus, without
the need for the concept of limit. We plan to continue this story at a future
date.

7. FoORMAL POWER SERIES

Up to now the umbral calculus has taken the point of view that the dual-
vector space P* can be profitably studied via the algebra .# of formal power
series in a single variable. We shall now take the reverse point of view. Since
any linear functional on P is a formal power series—so any formal power
series is a linear functional. In fact, a formal power series is a linear
functional in many ways—one for each choice of the sequence c,,.

We shall confine our attention here to one problem. A more detailed study
of the algebra of formal-power series awaits a future paper in this series. Let
¢, and d, be sequences of nonzero constants. Let g(f) and h(z) be invertible
series in ¥ and let f(r) and [(¢) be delta series. Consider the formal power
series

o o]

a
u(ty= Y gt k) f(0) - [tk —1)
k=0 Ck
for constants a, in K. Then u(¢) has an expression of the form
u(ty= > Fh(t; k) I(;0) - l(t; k= 1)
k=0 dk

for some constants b,. We wish to determine the constants b, in terms of the
constants a,.

A word of notation is in order. Since we are considering more than one
sequence of nonzero constants, we have more than one action of .# on P.
We shall use the notation

SO p(x))e
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to denote the action of the linear functional f(¢) on p(x) derived from
(t|x"y=c,0

nYnk*

Similarly, we shall write (f(¢)| p(x)), for the action of f(¢) on p(x) derived
from (t*|x")=d,d, ,. The following lemma will be of use:

LEMMA 7.1. If u(t) is in .#, then
U x")g/d, = u(t)|x") /c,.

Proof.  This result is obvious for u(z)=¢* and an appeal to linearity
completes the proof.

THEOREM 7.1. Let u(t) be the formal series

w0y = S (k) f(10) (1K~ 1) (1)
k k

=0

where a, is in K. Then

u()= " %ﬁMkﬂm0y~K3k~1% (1.2)
where
b= ¥ MO oy

j=0 cj

where r,(x) is the decentralized Sheffer sequence for (n(2), I(t)) using the
sequence of constants d,. That is,

(5 k) 15 0) -+ Uts bk — D)|r(x))g=d, 0, ,-

Proof. 1t is clear from degree consideration that an expression of the
form (7.2) exists. Applying both sides of (7.2) to r,(x), using the sequence
d,, gives

bn = <u(t)| rn(x)>d‘
By Corollary 3.1 we have

n J
rn(x): X <[ |rn(x)>d xj
j=0 d;

J
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and thus,

" (X)) -

b,= 2 — w@)|x’ > 4.
j=0 J

An application of Lemma 7.1 concludes the proof.

When we choose to take ¢, = d, this result can be simplified.

THEOREM 7.2. Let u(t) be the formal series

Ifs

u(t) = —kg(f; k)t 0) - [tk — 1),

Il
=}

where a, is in K. Then

u(r) = i bk K h(t; k) Kt 0) -+ (13 k— 1),
where
=2 % (g(e:)).f(150) -+ f(t:) — V)| r(x)),

where r,(x) is the decentralized Sheffer sequence for (h(t), I(t)).
Proof. Let s,(x) be the decentralized Sheffer sequence for (g(z),/(t)).
Then Corollary 3.1 gives

r)= > 2 o) 7150) oo (1~ DIry())

j=o G

Applying u(?) to both sides and observing that
u(t)|r,(x))="b,

and

u(B)|s,(x)) = a,
concludes the proof.

As a special case we have

COROLLARY 7.1. Let

o0

% a
u(ty= > L~

i=o Ck
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Then
S
u(y= 3 Eh(t; k) It 0) - Ut k— 1),
k=0 k
where
by= 3" L (|r,(x)),
Jj=0%j

where r,(x) is the decentralized Sheffer sequence for (h(t), (1))

Let us give some examples.

ExAMPLE 1. Let

CD
a,
u(t) = Kk,
fo k!

We determine b, in

= by
u(t) = Z_ o K gvMk,

Referring to Corollary 7.1 we have ¢, =n! and

hit) = e, W)=t
and so

rn(x) = Gn(x; yO""’ yn*l)

is the Goncarov sequence. Thus,

bnzl—j<t1|G(x Yosees Vo l)>
j:O.]
=3 (%) @GO rs)
j=0 J

S k - 1 Lok G 0: yul gk
Z Fl = Z —' . J aj n—j( ,yja'"’ynfl) e ‘
: LT
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ExAMPLE 2. Let

u(t) = i a,tt.
k=0
We determine b, in
@ *
0= & T T

Referring to Corollary 7.1 we have ¢, = 1 and

t

h(t) = =
0 —

s Q)

I —y,t
and so
ra(X)=(x—pp) -+ (x =y, ).

Thus,

n

b,= Z aj<tj|(x—y0) (X =Y, )

i=0

If we write o(n,j) for the elementary symmetric function on Yooreees Vu_q Of
order j, then

(—30) - (=2 )= N~ o a7

i=0

and so
Flx=pe) - (x—=p,_)) = (=1)"7 o(n, n — j).
Therefore,
b,=> ()"~ a;o(n, n—j)
i=o

and

[ee] o k

PNPWLESS [ (=% * a,o(n n—j)}

k=0 k=0 Jj=0

tk
=y~ 0 -p0)




312 STEVEN ROMAN

EXAMPLE 3. Let
(1)

ul)= N’ 2 o Zk gvigk

We determine b, in

tk
(l_zot) (l=z0)

HMB

u(t) =

Referring to Theorem 7.1 we have

c,=nl, g)=e", f)=t,

and
d,=1, h@®)=0—z,0)"", I(t)=1t/(1 — z,1),
and so
rax)=(x—z) - (x—z, )= \_ (=D¥a(n, i)x""". (7.3)
Therefore
n J
by= ¥ SO 2y 2,
j=0 :
We see that
(Fl(x=zp) - (x— 2, ))y=(=1)"" a(n,n—j)
and
{'i Qi [ oy k( i
@)= Y (e,
i=0 *°
J .
= X <J> a; yl I-
i=0 \!
Hence,
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ExXAMPLE 4. Let

tk
u(t) = V‘ a, .
O & T~ (5D
We determine b, in
u(t)= > etk
iz K

Referring to Theorem 7.1 we have

=L gO)=U-y0)7",  fO=1t/1—p,0),

and
d,=n, h(t) = e, I(t)y=1
Therefore,
ra(x) =G, (x;2500s Z,_ )
and
=3 U WG (X3 tyrrs 2, 1))
izo
Now
<tj| G (X5 2g5es 2, 1))g = (”)j Gn—j(O; Zigenns Zpy_ 1)
and

GO = 3 adt /(1= pot) - (1 —p,0)|

If we use the notation | y,...., y,],, for the kth divided difference of x/, then
. j1
u()x’). = L ai[ Yores Vil
i=o
and so
n

j
b,= 2 Z (m); @il Yoss ¥il G (05 2jsunes 2, ).

Jj=01i=0
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2.

10.
.
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