The Number of Partitions of a Set

Gian-Carlo Rota
The American Mathematical Monthly, Vol. 71, No. 5 (May, 1964), 498-504.

Stable URL:
http://links jstor.org/sici?sici=0002-9890%28196405%2971%3 A5%3C498%3 ATNOPOA%3E2.0.CO%3B2-R

The American Mathematical Monthly is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Wed Oct 12 06:59:03 2005



498 THE NUMBER OF PARTITIONS OF A SET [May
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but there seems to be no simple general form.
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THE NUMBER OF PARTITIONS OF A SET
GIAN-CARLO ROTA, Massachusetts Institute of Technology

Let S be a finite nonempty set with % elements. A partition of S is a family of
disjoint subsets of S called “blocks” whose union is S. The number B, of dis-
tinct partitions of S has been the object of several arithmetical and combina-
torial investigations. The earliest occurrence in print of these numbers has never
been traced; as expected, the numbers have been attributed to Euler, but an
explicit reference to Euler has not been given, and Bell [7] doubts that it can



1964] THE NUMBER OF PARTITIONS OF A SET 499

be found in Euler’s work. The properties of these numbers are periodically being
rediscovered, as recently as 1962 (cf. [13]). Following Eric Temple Bell, we
shall call them the exponential numbers. Bell [4, 5, 6, 7], used the notation e,;
on the other hand, Jacques Touchard [29 and 30] used a, to celebrate the birth
of his daughter Ann; Becker and Riordan [3] used B, in honor of Bell. We shall
follow their choice.

A great many problems of enumeration can be interpreted as counting the
number of partitions of a finite set; for example, the number of rhyme schemes
for n verses, the number of ways of distributing # distinct things into # boxes
(empty boxes permitted), the number of equivalence relations among # elements
(cf. [8]), the number of decompositions of an integer into coprime factors when
n distinct primes are concerned (cf. Bell [7]), the number of permutations of »
elements with ordered cycles (cf. Riordan [27], page 77 ff.), the number of Borel
fields over a set of # elements (cf. Binet and Szekeres [8]), etc., etc. Exponential
numbers occur frequently in probability, and their theory is closely related to
that of the Poisson-Charlier polynomials (see below).

Several explicit expressions for the exponential numbers are known, and can
be found in [2, 3, 5, 6, 10, 13, 14, 15, 16, 22, 25, 29, 30, 32]. One of the simplest
ways of describing the sequence B, is by its exponential generating function

© B,

€)) >

n=0 n l

—_ —1
an = g1,

where we have set Bo=1 by convention. All known explicit formulas, however,
except the one we shall derive, rely to a greater or lesser degree upon direct
enumerations leading to nonimmediate recursions for the sequence B..

In this note we shall give a new formula for the exponential numbers (for-
mula (4) below) which differs from the previous ones in that it relies least upon
direct counting arguments, and which hinges instead upon some elementary con-
siderations of a “functorial” nature. It is the author’s conviction that formula
(4), which we derive below, is the natural description of the exponential num-
bers. The basic idea is a general one, and can be applied to a variety of other
combinatorial investigations. We shall see that it easily leads to quick deriva-
tions of the properties of the B,.

Consider an auxiliary finite set U having # elements, #>0. We shall examine
the structure of the set US of functions with domain S, a set with # elements,
and range a subset of U. The basic fact is that there are " distinct such func-
tions, as is evidenced by the most elementary of counting arguments. We shall
now examine this set of functions in greater detail.

To every function f: S— U there is naturally associated a partition « of the
set S, called the kernel of f, defined as follows. Two elements @ and b of S are
to belong to the same block of , if and only if f(a) =£(b).

How many distinct functions are there with a given kernel w? This question
is easily answered. Indeed, let N(w) denote the number of distinct blocks of the
partition . A function having kernel = must take distinct values on distinct
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blocks of . Thus, such a function takes altogether N(r) distinct values, and the
number of distinct such functions equals the number of one-to-one functions
from a set of N(r) elements to the set U. Again, it is well known that such a
number is #(x—1) - - - (u—N(w) +1) = () ¥, and this expression is called the
factorial power of the number %, with exponent N().

Now, every function has a unique kernel. Therefore we have the following
identity, valid for all integers #>0:

(2) 2 Wwew = un,

where the sum on the left ranges over all partitions of = the set .S.

We now come to the main idea. Let V be the vector space over the reals
consisting of all polynomials in the single variable #. Any sequence of poly-
nomials of degrees 0, 1, 2, - - -, is a basis for this vector space, in particular, the
sequence (#)o=1, ()1, ()3, (u)s - - -. Since a linear functional L on V is
uniquely determined by assigning the values it takes on an arbitrary basis,
there exists a unique linear functional L on V such that

L(1) = 1, L((u)k) =1, k=1,2,3,.--.
Applying L to both sides of (2) we obtain
3 22 L((w)y ) = L(wr);

but, by the definition of L, the left side simplifies to a sum of as many ones as
there are partitions of the set .S. In other words, (3) simplifies to

4) B, = L(u").
This formula is the explicit expression for the exponential numbers which
we wanted to establish. Let us see now how it can be used to derive the other

properties of the exponential numbers.
We begin by deriving the recursion formula for the numbers B,,

(5) Buy1 = i( n) B;.

k=0 k
Now, since %(#—1),= (#)n41, we have L(u(u—1),)=1=L((%),). Since the
polynomials 1, (#), for n=2, 3, - - - form a basis for the vector space V, it
follows from the linearity of L, that
(6) L(up(u — 1)) = L(p(w))

for every polynomial p. In particular, for p(«) = (#+1)* we obtain
L(w+) = L((u + 1)),

but this is precisely formula (5), as we wanted to show.
Note that identity (6) for all polynomials p together with the initial condi-
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tion L(1) =1 completely characterizes the linear functional L, as defined by (4),
since the argument by which we have established (6) is reversible. We shall now
use this fact in establishing the generating function (1) for the exponential num-
bers. To this end, let g,/#! be the nth coefficient in the Taylor series expansion
of ¢ 1;

E g:xn pa— ee—~1
n=0 7!

There exists a unique linear functional M on V such that M(u")=g,, and
it will suffice to prove that L= M, to conclude that g,=B,. Now,

e"—1 — M(ea;u)
where M (e**) is defined as
© un)
2 an.
n=0
Differentiating, we get
o
d
)] e 1= M (—— e“‘) = M(ue*v),
dx

whence M(e*“+) = M (ue**). Expanding the functions e+ and e=* into Taylor
series in the variable x and comparing terms, we obtain M((u41)") = M (ur+1).

But, since the polynomials #» form a basis for V, this implies at once prop-
erty (6). Hence M=L.

Note that differentiating under M, as we have done in (7), does not require
any continuity properties of the functional M: it is “purely formal.”

There is another, more amusing derivation of the generating function di-
rectly from (4), which goes as follows:

IRy

n=0 7 | ne=0

L(u ")

xm = L(ew).

Now, set e*=1-v, and expand (1+42)* by the binomial theorem:

- n . L((#)n
S 2ot =1 X ) - 5 HOD

nm=0 n! n=0 W n=0 n!

x
=¢ = ¢ 1, q.e.d.

In this derivation, it may at first seem puzzling (as suggested by R. D.
Schafer) that infinite sums have been commuted with L, without discussing
any continuity properties of L. The puzzle is solved as soon as it is noticed that
all appearances of the symbol L can be completely eliminated, and the whole
derivation amounts to the proof of an infinite sequence of identities relating
the coefficients of two Taylor series. The use of L is just a speedy way of estab-
lishing these identities.
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Next, we shall establish the remarkable formula of Dobinski [14]:

n

s B __1 i 2n 4n
(8) n+1-—-e—‘( +E+-2—!‘+EI+"').

We begin by noticing that the exponential series e= Y >, 1/k! can be
trivially rewritten as e= D ;. (k)./k!, where n is any nonnegative integer. In view
of the definition of the linear functional L, this gives

1 2 (k)
L((w)n) = — Z X .

€ k=0

Using again the fact that the polynomials («), form a basis for the vector space
V, and that the functional L is linear, we infer at once that

12 k
) L(p(w) = — 28
€ k=0 k!
for any polynomial p. Dobinski’s formula now follows by setting p(x) = u».

Dobinski’s formula is particularly suited to the computation of B, for large
n, by an application of the Euler-Maclaurin summation formula (cf. [16] and
[25]).

Identity (9) establishes an important property of the linear functional L,
namely, that it is positive definite on the half-line [0, »). We can therefore de-
fine a sequence of orthogonal polynomials relative to L, and the properties of
classical systems of orthogonal polynomials (cf. Szegé [28]) will apply to this
set. Such a set of polynomials, we shall now prove, is

n n

(10 i) = 3 02} ) @
k=0 k

where we use Touchard’s notation %, from [30].

We first note that (6) can be rewritten in more enlightening form by using
operator notation. Let E: p(u)—p(u+1) be the shift operator, let D: p(u)—p’(x)
be the derivative, and let V:f(x)—f(1) be the linear functional consisting in
evaluating a function at x=1. Then (6) can be rewritten for any integer £>0,
by iteration, as

L(E*p(u)) = L(p(w)V D*s¥),

where we have used the fact that (u),= VD*x®. It follows from linearity if g is
any polynomial, that

L(g(E)p(w)) = L(p(w)Vg(D)a").

Now set g(x) = (1—x)/, giving g(E) = (—1)7A7, the iterated difference operator.
For this choice of g, we have evidently Vg(D)x*= (—1)7h;(x). Set p(u) = h,(u),
and obtain
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(—=1) #L(A%hn(u)) = L(kn()hs(w)).

If >n, Aih, vanishes identically, proving the orthogonality of the polynomials,
and if j=n, we get L(k,(u)?) =n!, which gives the normalizing factors.

The polynomials %, are the special case of the Poisson-Charlier polynomials
(cf. Szegs [28], p. 34) obtained by setting a=1, in Szeg&'s notation. As re-
marked by Touchard [30], they are particularly useful for computation of the
exponential numbers by recursion. Formulas for the first seven polynomials are
given by Touchard [30].

These examples suffice to give an idea of the use of formula (4), and to sup-
port the contention that this formula gives the natural definition of the exponen-
tial numbers. Formula (4) has been suggested by the Blissard calculus tech-
niques so useful in enumerative analysis, (cf. Riordan [27], Ch. 2 Section 4); by
the systematic use of linear functionals we can give a rigorous foundation to
this calculus, as well as extend its uses in some directions. We hope to implement
these contentions in a future publication.

This work was begun under contract NSF-GP-149, continued under contract with the Office
of Naval Research, and concluded while the author was a Fellow of the Sloan Foundation. The
author wishes to thank the referee for several improvements in the text, and for valuable historical
references.

The following bibliography contains all publications known to the author which study the
exponential numbers. He will greatly appreciate any suggestions of omitted works.
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ON THE SPANS OF DERIVATIVES OF POLYNOMIALS
RAPHAEL M. ROBINSON, University of California, Berkeley

1. Introduction. By the span of a polynomial all of whose roots are real, we
shall mean the difference between its largest and smallest roots. We are inter-
ested in the following problem: If the span of a polynomial f(x) of degree n with
real roots is given, how is the span of its k-th derivative maximized? 1t will be suffi-
cient to consider polynomials f(x) =x"+ - - - all of whose roots lie in the inter-
val —1=x=1. Then all of the roots of f®(x) lie in the same interval, and we
try to maximize the difference between its largest and smallest roots.

We shall suppose throughout that k<n—2, so that f®(x) will have more
than one root. On the other hand, we see that the problem is trivial if =2k 2.
For in this case, we may put k41 roots of f(x) at each end point x= +1. Then
F®(x) will have a root at each end point, and will therefore have span 2. If
n>2k+2, some of the roots of f(x) are arbitrary, whereas for n=2k-+2 the
span of f®(x) is maximized only for f(x) = (x — 1)¥+1(x 4 1)*+1,

Thus the nontrivial cases of the problem are those with k4+2=<n=<2k+1.
We shall show in Section 2 that in these cases the span of f®(x) can be maximized
only when all of the roots of f(x) are at the end points x= +1.



