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1. INTRODUCTION 

The so-called Heaviside calculus, invented by Boole and developed without 
interruption to our day, is the mainspring of much contemporary work in 
operator theory and harmonic analysis. The spectacular analytic develop- 
ments in these fields in the last fifty years, coupled with current grandiose 
plans for unification, cannot, however, be said to have been matched by 
equal strides in the computational and algorithmic aspects. The algebraic 
aspects of the theory of special functions have not significantly changed since 
the nineteenth century. As a result, a deep cleavage is now apparent between 
the breadth of theory and the clumsiness of special cases. 

In this work we reduce to a minimum the analytic apparatus of harmonic 
analysis on the line, by considering only polynomials. Our objective is to 
present a unified theory of special polynomials by exploiting to the hilt the 
duality between x and dldx. 

The main technique adopted here is a rigorous version-perhaps the 
first one---of the so-called “umbral calculus” or “symbolic calculus,” 
widely used in the past century. This gives an effective technique for express- 
ing a set of polynomials in terms of another. We have throughout emphasized 
operator methods at the expense of generating functions, which were almost 
exclusively used in the past. No doubt several results given later could be 
rephrased in terms of generating functions, but only at the expense of con- 
ceptual clarity. Umbral methods, we hope to show, are operators in disguise. 
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The three kinds of polynomial sequences studied are: 

(a) sequences of binomial type, that is, sequences of polynomials p,(x) 
satisfying the identities 

P& + Y> = k;. (3 PkWPn-k(Y). 

These sequences were studied in the third part of the series (referred to as 
III), but we repeat the main results here, both in order to render this work 
self-contained and in order to give some results in greater generality. 

(b) She@r sets, that is, sequences So of polynomials satisfying the 
identities 

s,(x + Y) = c (“k) Sk(X) Pn-k(Y), 
k>O 

where p,(x) is a given sequence of binomial type. 

(c) Cross-sequences, namely doubly indexed sequences p?](x) of 
polynomials, satisfying 

p:+qx + Y> = 1 (3 Pjc”‘(4PZk(Y). 
k>O 

This last theory is only touched upon here, and remains largely undeveloped. 
One of the unexpected consequences of the present algebraic approach 

is that the theory of eigenfunction expansions for polynomials can be rendered 
purely algebraic. This gives a meaning to eigenfunction expansions for 
Hermite polynomials of arbitrary variance and for Laguerre polynomials of 
arbitrary 01 (except a negative integer, where the gamma function is not 
defined). 

A number of examples, each of which includes, we would like to hope, a 
little novelty, is given at the end, both as an illustration of the theory and to 
show how much of the past literature on special polynomials is the iteration 
of a few basic principles. We have, however, resisted the temptation of 
developing a theory of combinatorial identities as an application, outside of a 
few hints. 

2. BMIC POLYNOMIALS 

We shall be concerned with the algebra (over a field of characteristic zero) 
of all polynomials p(x) in one variable, to be denoted P. 

By a polynomial sequence we shall denote a sequence of polynomials p,(x), 
i = 0, 1) 2 )...) where p,(x) is exactly of degree i for all i. 
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A polynomial sequence is said to be of binomial type if it satisfies the infinite 
sequence of identities 

P& + Y) = $, (;) Pa44 Pla--kb% n = 0, 1) 2 ).... 

The simplest sequence of binomial type is of course x”, but we give some 
nontrivial examples. Other examples are found in III. 

The present theory revolves around the interplay between the algebra of 
polynomials and another algebra, to be presently introduced and to bedenoted 
by Z, namely, the algebra of shift-invariant operators. All operators we consider 
are, of course, tacitly assumed to be linear. We denote the action of an operator 
T on the polynomial p(x) by Tp(x). This notation is not, strictly speaking, 
correct; a correct version is (Tp) (x). H owever, our notational license results 
in greater readability. 

The most important shift-invariant operators are the shift operators, 
written Ea, that is, Eap(x) = p(x + a). Other examples are given later. 

An operator T which commutes with all shift operators is called a shift- 
invariant operator. In symbols, TEa = EaT, for all real a in the field. 

We define a delta operator, usually denoted by the letter Q, as a shift- 
invariant operator for which Qx is a nonzero constant. 

Delta operators possess many of the properties of the derivative operator, 
as we will show. In fact our first objective is to exploit the analogy between 
delta operators and the ordinary derivative. 

PROPOSITION 1. If Q is a delta operator, then Qa = 0 for every constant a. 

Proof. Since Q is shift invariant, we have 

QE”x = E”Qx. 

By the linearity of Q, 

QE”x = Q(x + a) = Qx + Qa:= c + Qa, 

since Qx is equal to some nonzero constant c by definition. But also 

IPQx = E% = c 

and so c + Qa =Ic. Hence, Qa = 0. Q.E.D. 

PROPOSITION 2. If p(x) is a polynomial of degree n and Q is a delta operator, 
then Qp(x) is a polynomial of degree n - 1. 

409/443-13 
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Proof. It is sufficient to consider the special case p(x) = x”. From the 
binomial theorem and the linearity of Q, we have 

Q(x + a)" = k;. (3 LZ~QX+~. 

Also by the shift-invariance of Q 

Q(x + a)” = QEaxn = EaQx” = r(x + a) 

say, so that 

r(x + u) = k;o (;) u~Qx’+~. 

Setting x = 0, we have expressed the polynomial r(x) as a polynomial in the 
parameter a, 

r(a) = k;. (3 ~k[Qx”-kltz=o. 

The coefficient of un is 

[QP”]z,,, = [Ql]+,, = 0 

by Proposition 1. Further, the coefficient of an-l is 

( 1 n 14. 1 [Qx"-~+~],_~ = TZ[QX]~=~ = nc # 0. 

Hence Y is of degree n - 1. Q.E.D. 

Let Q be a delta operator. A polynomial sequence p,(x) is called the 
sequence of basic polynomials for Q if: 

(1) PO(X) = 1; 
(2) p,(O) = 0 whenever n > 0; 

(3) QP&) = Nan-&+ 

PROPOSITION 3. Every delta operator has a unique sequence of basic poly- 
nomials. 

Proof. Inducing on n, assume that pk(x) has been defined for k < n to 
satisfy the foregoing conditions. We show that p,(x) also exists and is unique. 
Indeed, a generic polynomial of degree n can be written in the form 

n-1 
pcx) = uxn + c ckfk(x), 

k=O 

a # 0. 
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Now, 

n-1 

QP(x) = ~Qx” + c ck * Kpk--l(x); 
k=l 

therefore, Qxn being exactly of degree n - 1, there is a unique choice of the 
constants cr ,..., c,-~ , a for which Qf(x) = np,Jx). This determines p(x) 
except for the constant term cs , but this is in turn uniquely determined by 
the condition p(0) = 0. Q.E.D. 

The typical example of a basic polynomial sequence is xn, basic for the 
derivative operator D. Others are given later, or can be looked up in III. 

Several properties of the polynomial sequence xn can be generalized to an 
arbitrary sequence of basic polynomials. A basic property of x” is that it is of 
binomial type. This turns out to be true for every sequence of basic polyno- 
mials and is one of our basic results. 

THEOREM 1. (4 IfPnO b x zs a asic sequence for some delta operator Q, 
then it is a sequence of polynomials of binomial type. 

(b) If p,(x) is a sequence of polynomials of binomial type, then it is a 
basic sequence for some delta operator. 

Proof. (a) Iterating property (3) of basic polynomials, we see that 

Q’“P&) = @>k Pa-k(X), 

where 

(?z)k = n(n - 1) ... (n - K + 1). 

And, hence, for k = n, 

while for k < n, 

[Q”Pn~4ls-o = & 

[Q”~n(4lr-o = 0. 

Thus, we may trivially express P,(X) in the form 

Since any polynomial p(x) is a linear combination of the basic polynomials 
p,(z), this expression also holds for all polynomials p(x), that is, 

P(X) = k;. q [Q4(x)lz=o - 
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Now suppose P(X) is the polynomial p,(x + y) for fixed y. Then 

P& + Y) = k;. q [Q'"P~(x + YN,, . 
But 

[Q4& + r)lz=o = [Q”@‘~nWlz=o 
= P’Q%(~)1~=o = P’(W~d41~-o = ~4~-dr), 

and so 

P,(x + Y) = c (1) PkWP?a-k(Y); 
k>O 

that is, the sequence p,(x) is of binomial type. 

(b) Suppose now p,(x) is a sequence of binomial type. Setting y = 0 
in the binomial identity, we obtain 

hdx> = c (;) pkcx> b-do) 
k>O 

= P&> PO(O) + w,&) P,(O) + ... . 
Since each pi(x) is exactly of degree i, it follows that p,(O) = 1 (and, hence, 
pa(x) = 1) and p,(O) = 0 f or all other i. Thus. properties (1) and (2) of basic 
sequences are satisfied. 

We next define a delta operator for which such a sequence pa(x) is the 
sequence of basic polynomials. Let Q be the operator defined by the property 
that Qpo(x) = 0 and Qpn(x) = np,-r(x) for 12 >, 1. Clearly Qx must be a 
nonzero constant. Hence, all that remains to be shown is that Q is shift- 
invariant. 

We may trivially write the property of being of binomial type in the form 

P~(X + Y) = k;. ~Q’“P.(Y), 

and, repeating the device used in (a), this may be extended to all polynomials: 

p(x + y) = k;. w Q”P(r)- 
Now replace p by Qp and interchange x and y on the right-an operation 
which leaves the left side invariant-to get 

(Qp) (x + Y> = kso w Qk+'~W 
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But 

and 
(QP) @ + Y> = WQP) (4 = EYQ~(4 

go w Q"+P(x) = Q (z. q Q*P(x)) 
= Q(P(x + YN = QEg~(x). 

Q.E.D. 

3. THE FIRST EXPANSION THEOREM 

We study next the expansion of a shift-invariant operator in terms of a 
delta operator and its powers. The difficulties caused by convergence ques- 
tions are minimal, and we refuse to discuss them in this paper (but see III). 

The following theorem generalizes the Taylor expansion theorem to delta 
operators and their basic polynomials. 

THEOREM 2 (First Expansion Theorem). Let T be a shift-invariant 
operator, and let Q be a delta operator with basic set p,(x). Then 

with 

% = [~dX)lz-o . 

Proof. Since the polynomials p,(x) are of binomial type (Theorem l), 
we may write the binomial formula as in the preceding proof: 

p,(x + y) = k;o v Qk~nb9. 

Apply T to both sides (regarding x as the variable and y as a parameter) and 

get 

TP& + Y> = k$o ~Q’“P.(Y)- 

Once more, by linearity, this expression can be extended to all polynomials p. 
After doing this and setting x equal to zero, we can replace y by x and get 

Tp(x) = c rTpk~)l”-o Qkp(x). 
k>O 

Q.E.D. 
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The reader may apply the preceding theorem to derive several of the classical 
expansion formulas of numerical analysis. Our present application will be of a 
more theoretical nature: 

THEOREM 3. Let Q be a delta operator, and let F be the ring of formal power 
series in the variable t over the same Jield. Then there exists an isomorphism 
from F onto the ring Z qf shift-invariant operators, which carries 

f(t) = k;. g into z0 2 Q”. 

Proof. The mapping is clearly linear, and by the first expansion theorem, 
it is onto. Therefore, all we have to verify is that the map preserves products. 
Let T be the shift-invariant operator corresponding to the formal power 
series f (t) and let S be the shift-invariant operator corresponding to 

We must verify that 

g(t) = 1 b t”. 
k>O k! 

[T~P&)L = 1 (i) a&-k , 
k>O 

where p,(x) are the basic polynomials of Q. Now 

[T~Prw!=o = [c;o$Qk ko%9 p4,$~o 
= [;, ;o$$Qk+n~h4] - . . X=0 

But p,(O) = 0 for n > 0 and pa(x) = 1. The only nonzero terms of the 
double sum occur when n = Y - k. Thus, 

= Lx 
k>O 

k !;f-$ ! r !po(x)] 3c=o 

= c (;) ‘d-k * 
k>O 

Q.E.D. 

COROLLARY 1. A shift-invariant operator T is invertible if and only if 
Tl #O. 
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In the following, we shall write P = p(Q), where P is a shift-invariant 
operator and p(t) is a formal power series, to indicate that the operator P 
corresponds to the formal power series p(t) under the isomorphism of 
Theorem 3. 

COROLLARY 2. An operator P is a delta operator if and only ifit corresponds, 
under the isomorphism of Theorem 3, to a formal power series p(t) such that 
p(0) = 0 and p’(O) f 0. 

Recall that to every formal power seriesp(t) such that p(0) = 0 andp’(t) # 0 
there corresponds a unique inverse power series p-l(t). In symbols, if 

p(t) = c 3 t”, 
k>lk! 

then 

PWM = k& 2 (p-‘(t))” = t, 

where the sum is well defined, sincep-r(0) = 0 and (p-l)’ (0) # 0. Similarly 
we havep-l@(t)) = t. 

Essentially, the problem we wish to solve in the present paper is the 
following: to what “operation” in the ring of shift-invariant operators cor- 
responds the operation of composition p(q(t)) of power series with p(O) = 0, 
under the isomorphism theorem ? Remarkably, this question does have an 
answer in the present context. 

Next, we connect some of the preceding results with generating functions. 

COROLLARY 3. Let Q be a delta operator with basic polynomials p,(x), and 
let q(D) = Q. Let q-‘(t) be th e inverse formal power series. Then 

p&l 
I 

fp = exP-‘w) 
?l>O n. 

Proof. Expand 29 in terms of Q by the first expansion theorem. The coef- 
ficients a, are p,(a). Hence, 

a formula which can be considered as a generalization of Taylor’s formula, 
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and which specializes to several other classical expansions. Now use the 
isomorphism theorem with D as the delta operator. We get 

c Pd4 
?l>O 

7 4(t)” = eat, 

whence the conclusion, upon setting u = q(t) and a = X. Q.E.D. 

This result will be interpreted more explicitly later (see Section 4). Finally, 
we note a fact that has already been implicitly used. 

COROLLARY 4. Any two shift-invariant operators commute. 

4. THE PINCHERLE DERIVATIVE 

For the first time we introduce operators that are not shift-invariant. The 
simplest is multiplication by X. Let p(x) be a polynomial. Multiplying each 
term of p(x) by the variable X, that is, replacing each occurrence of xn by 
x”+r n > 0, we obtain a new polynomial xp(~). Call this the multiplication 
operitor and we denote it by x. Thus, x: P(X) -+ xp(x). For any operator T 
defined on P, the operator 

T’ = TX - XT, 

will be called the Pincherle derivative of the operator T. 

PROPOSITION 1. If T is a shift-invariant operator, then its Pincherle 
derivative, 

T’ = TX - XT, 

is also a shift-invariant operator. 

The proof is a straightforward verification. 
As a special case of the first expansion theorem, it follows that any shift- 

invariant operator T can be expressed in terms of D, that is 

T= c akD”, 
k>Ok! 

where ak = [Tx~],,, . Further, by the isomorphism theorem (Theorem 3) 
the formal power series corresponding to T is 

k;. 3 tk = f(t)* 

We call f (t) the indicator of T. 
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PROPOSITION 2. If T has indicator f (t), then its Pincherle derivative T’ has 
f’(t) as its indicator. 

The proof is a direct verification. Similarly, from the isomorphism theorem 
and from the preceding proposition, we easily infer the following. 

PROPOSITION 3. (TS)’ = T’S + TS’. 

And just as easily from the isomorphism theorem, we can infer Propo- 
sition 4. 

PROPOSITION 4. Q is a delta operator if and only ;f Q = DP for some 
shift-invariant operator P, where the inverse operator P-l exists. 

We come now to the main result of this section, which enables us to 
compute basic sets for a given delta operator. 

THEOREM 4 (Closed forms). If p,(x) is a sequence of basic polynomials for 
the delta operator Q = DP (see Proposition 4), then for n > 0: 

(1) p,(x) = Q’P-*-lxn; 
(2) p,(x) = P-nx” - (P-“)‘x”-1; 
(3) p,(x) = xP-%x”-1; 
(4) (Rodrigues formula) p,(x) = ~(Q’)-~p~-~(x). 

Proof. We shall first show that the right sides of (1) and (2) define the 
same polynomial sequence. Indeed, 

Q)p-n-1 =(DP)'p-n-l 

= (D’P + Dp’) P-*-l. 

Now, D’ = I. Hence, 

whence 

Q’p-n-l = p-n + p’p-n-1D 

= P-n - (l/n) (P-“)’ D, 

Q'p-n-lXn =Mzxn -(J.~)'~n-l, 

as desired. Next, recalling the definition of the Pincherle derivative of (P”)‘, 
we have 

pnxn - (p-n)’ x”-1 = p- nxn - (p-nx - Xp-n) Xn-l 

= xp-nxW-l , 

and, thus, the right side of formula (3) equals that of formulas (2) and (1). 
Setting 

q,(x) = Q’P-*-lx” 
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and writing Q = DP, we get 

QqJx) = DPQ’P-+lxn = Q’P-n Dxn = nq,-,(x). 

Thus, if we can show that qn(0) = 0 f or n > 0, the proof that qn(x) is the 
sequence of basic polynomials for Q will be complete, and it will follow that 
formulas (l)-(3) are equivalent. From the equivalence of Eqs. (l)-(3) we see 
that 

q,(x) = xP-nxn-1, 

and hence qn(0) = 0 for n > 1. Thus, (l)-(3) have been proved, and 

!7&) = P,(X). 
To prove (4), first invert formula (l), 

x” = (Q’)-l P”+p,(x). 

Note that Q’ is invertible (Isomorphism Theorem and Proposition 2). Change 
n to n - 1 and insert the right side into the right side of (3): 

p,(x) = xP-~(Q’)-~ Pnp,-,(x) 

= x(Q')Y P,&), 

which is Rodrigues’ formula. Q.E.D. 

The following formulas relate the basic polynomials of two different delta 
operators in an analogous way. Their proof is immediate. 

COROLLARY. Let R = DS and Q = DP be delta operators with basic 
polynomials r,(x) and p,(x), respectively, where S-1 and P-l exist. Then 

(5) pn(x) = Q’(R’)-l P-+?F+lrJx), n 3 0; 

(6) p,(x) = ~(L3p-l)~ x-%,(x), n 2 1. 

A last (and useful) characterization of basic sets is the following theorem. 

THEOREM 5. Let P be an invertible shift-invariant operator. Let p,(x) be a 
sequence of basic polynomials satisfying 

~~-lPn(xLo = nCP-lPn-r(%=O , 

for all n > 0. Then pIE(x) is the sequence of bask polynomials for the delta 
operator Q = DP. 

Proof. Define the operator Q by setting Ql = 0, 

QP~(x> = nPn-d4 
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and extending by linearity. It is easily seen that Q is shift-invariant. In terms 
of Q, the preceding identity can be rewritten in the form 

By linearity, this extends to an identity for all polynomials p(x) with p (0) = 0 
-an argument we have often used. Thus, recalling that 

L-lP(a!=o = l?P(~>l~=o 

whenever p(0) = 0, we have 

[~P@>lz=o = [P”Qp(x>]z=,, 

for all polynomialsp(x), including those for whichp(0) # 0, since the formula 
trivially holds for constants. Setting p(x) = 4(x + u) we obtain, using the 
shift-invariance of P and Q, 

D&4 = PIQ~Wl,=, 
= [E@P-lQq(x)]+,, 
= P-lQq(a), 

for all constants a. But this means that D = P-‘Q, or Q = DP. Q.E.D. 

COROLLARY 1. Given any sequence of constants c,,~ , n = 1,2 ,..., with 
cl.1 # 0 there exists a unique sequence of basic polynomials p,(x) such that 

that is, 

[x-4n(x)lz=o = &,I > 

P,(X) = 1 %,kXk> n = 1, 2,.... 
k>l 

COROLLARY 2. Let g(x) be the indicator of Q in the preceding corollary. 
Then g = f -1, where 

t” 
f ct) = 1 ck,l D * 

k>l 

Proof. From Corollary 1 

D = QP-l = 1 ck.1 g =f (Q), 
k>l 

and the result follows. 
The preceding corollaries show that a sequence of basic polynomials is 

completely determined by the coefficients of their first power X. This fact 
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can be made the starting point for a connection between the present theory 
and the theory of compound Poisson processes, as we hope to do elsewhere. 

Note that the preceding corollary gives an explicit interpretation to the 
generating function of a sequence of basic polynomials, which can now be 
restated as 

1 P&4 9 _ nl t - exp 
( 
x C cg,l * @/k! , 

n>o . k>l 1 

a form which makes it almost evident. 

5. SHEFFER POLYNOMIALS 

A polynomial sequence s,(x) is called a She&r set or a set of She@ poly- 
nomials for the delta operator Q if 

(1) so(x) = c # 0, 

(2) Qs&> = ns,-l(x). 
A Sheffer set for the delta operator Q is related to the set of basic poly- 

nomials of Q by the following. 

PROPOSITION 1. Let Q be a delta operator with basic polynomial set qn(x). 
Then sn(x) is a She& set relative to Q ;f and only if there exists an invertible 
shift invariant operator S such that 

SJX) = s-lq,(x). 

Proof. Suppose first that s,(x) = S-lqJx), where S is an invertible shift 
invariant operator. Then S-IQ = QS-l, and 

QG(x> = QS-%n(x) = s-lQqn(x) 
= S-lnq,-,(x) = nWq,-,(x) = 11s,&). 

Further, since S-1 is invertible S-l1 = c # 0, by the isomorphism theorem, 
so that 

so(x) = s-lq,(x) = s-11 = c. 

Thus, s,(x) is a Sheffer set. 
Conversely, if s,(x) is a Sheffer set for the delta operator Q, define S by 

setting 

s : s,(x) - !7&), 

and extending S by linearity, so that it is well defined on all polynomials. 
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Since the polynomials s, and qn are both of degree n, and so(x) # 0 S is 
invertible. It remains to show that S is shift-invariant. To this end, note that S 
commutes with Q. Indeed, 

SQsJx) = m!&,(x) = nq,-,(x) 

= Qq&) = Qh&>, 

and again by the linearity argument we infer that QS = SQ; whence 
SQ” = PS. Finally, recall that by the first expansion theorem one has 

Et = c %Q", 
n>O *! 

an = L%(x)la=o; 

whence EtS = SEt for all t. We conclude that S is shift-invariant. 
Q.E.D. 

Some of the properties of basic sets can be extended to Sheffer sets; one of 
the most important is 

THEOREM 6 (Second Expansion Theorem). Let Q be a delta operator with 
basic polynomials q,,(x), let S be an invertible shift-invariant operator with 
She& set S,,(X). If T is any shift invariant operator, and p(x) is any polynomial 
the follow&g identity holds for all values of the parameter y : 

TP(x+Y)= C *QTSTP(X). 
n>o * 

Proof. By the first expansion theorem we have 

with 

that is, 

%a = rJf%d41r=0 = hdx + Y>lz=o = &z(Y); 

E” = c !&$Qn. 

n>o * 

Applying this to p(x), 

J?P(X) = P@ + Y) = c 
n>0 

+ Q”p(x). 
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We may interchange the variables x and y in the sum without affecting the 
left side: 

P(x + Y) = c q QnP(Y). 
n>o . 

Applying S-l, regarding x as the variable and y as a parameter, this becomes 

WP(x + Y) = c 
?I>0 

s-‘n4;1(“) PP(Y> 

= z, ~PP~Y)~ 

for all y. Again interchanging the variables x and y 

Now again regarding y as a constant and x as a variable, and applying 5’ 
followed by T 

Tp(x + y) = 1 +Q9Tp(r). Q.E.D. 
Tl>O 

COROLLARY 1. If s*(x) is a Sheffeer set relative to the invertible shift invariant 
operator S and the delta operator Q, then 

s-1 = c ApQn. 
n>o . 

Proof. In the preceding theorem, set y = 0 and T = S-l. This gives 

S-l&) = 2 
n>o 

9 Qn~P(x), 

for any polynomial p(x), which by definition is the same as saying that 

S-1 = C +Q”. 

n>o . 

Q.E.D. 

The defining property of polynomial sequences of binomial type has the 
following analog for Sheffer polynomials. 

PROPOSITION 2 (Binomial Theorem). Let Q be a delta operator with basic 
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polynomials q,,(x), and let s,(x) be a Shefftr set relative to Q and to some invertible 
shift-invariant operator S. Then the following identity holds 

s,(x +Y) = c (3 Sk(X) 4n-k(Y). 
k>O 

Proof. Since qn(x) is of binomial type we have by definition 

k;. (;) !?k@> h--k(Y) = dx + Y). 

Apply S-l to both sides, where, of course, x is the variable, to obtain 

k;. (1) sk(x) h-k(Y) = s-lqn(x + Y> 

= S-Wq,(x) = EW’q,(x) = @s,(x) 

= 4x + Y). Q.E.D. 

We next show that S,(X) are completely determined by their constant terms: 

COROLLARY 1. Let the polynomials q*(x) and s,,(x) be defined as in Propo- 
sition 2. Then 

s&) = c (;) sk(o) %+k(X)’ 

k>O 

Proof. Immediate from Proposition 2 upon setting x = 0. 
The following converse of the second expansion theorem is useful. 

PROPOSITION 3. Let T be an invertible shift-invariant operator, Zet Q be a 
delta operator, and let sn(x) be a polynomial sequence. Suppose that 

for all polynomials f (x) and all constants a. Then the set s,(x) is the Shefler set 
of the operator T relative to the delta operator Q. 

Proof. Operating with T-’ and then with T after permuting variables, 
as we have already repeatedly done, we can recast the previous identity in 
the form 

?f (4 = c 
n>0 

yQnf (x); 
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whereupon, setting f(x) = p,(x), where p,(x) is the basic set of Q, we obtain 

and setting x = 0, this yields p,(u) = 2$(a) for all a. Q.E.D. 

As an application, we obtain a simpler proof of Rodrigues’ formula for 
basic polynomials (Proposition 4): 

PROPOSITION 4. Let p,(x) be the basic set for the delta operator Q. Then 

P&> = 4Q')Y P,-&), 

where Q’ is the Pincherle derivative of Q. 

Proof. From the first expansion theorem we have 

and taking the Pincherle derivative of both sides, 

By the preceding proposition, the polynomial set x-~&+~(x), n > 0, is the 
Sheffer set for the invertible shift-invariant operator Q’ relative to the delta 
operator Q, as desired. 

Next, using the notion of indicator developed in Section 4, we derive the 
generating function for the Sheffer polynomials. 

PROPOSITION 5. Let Q be a delta operator, and let S be an invertible shift- 
&variant operator. Let s(t) and q(t) be the indicators of S and Q, and let q-l(t) 
be the formal power series inverse to q(t). 

Then the generating function for the sequence s,(x) is given by 

1 ____ ezg-l( t) - 

W(t)) 
- $, +p tn. 

Proof. From the proof of the first expansion theorem, 
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Also, since xn is the basic set for the delta operator D, we have after a change 
of variable 

E”= c $Dn, 
?l>O 

and consequently the indicator of Ex relative to D is ext. By the isomorphism 
theorem we may pass to indicators in the expansion for FE% thereby 
obtaining 

Now set u = q(t) and replace u by t to obtain the conclusion. 
As a further consequence of Proposition 3, we have the following charac- 

terization of Sheffer polynomials by binomial identities. 

PROPOSITION 6. A sequence s,(x) is a Sheffer set relative to a basic set 
q*(x) if and only if 

s,(x + Y) = c (i) Sk(X) %-k(Y)* 
k>O 

6. RECURRENCE FORMULAS 

Given a set of polynomials p,(x), with pa(x) = 1, under what conditions 
are they Sheffer polynomials ? A simple answer is given by 

PROPOSITION 1. Let p,(x) be a polynomial sequence with pO(x) = 1. If 
p,(x) is a She&% set then for every delta operator A there exists a sequence of 
constants s, such that 

-!P&) = k;. (1) PdX) %-k % n > 0. (*) 

Also, ;f (*) h Id f s o s or ome delta operator A and some sequence s, , then p,(x) 
is a She@& set. 

Note that A need not be the delta operator associated with the set p,(x). 

Proof. Assume that there exists a delta operator A and a sequence of 
numbers s, so that (*) holds. We wish to show that p,(x) is a Sheffer set 
associated with some delta operator Q. 

409/42/3-14 
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Define the linear operator Q by 

QP&) = a&), n>O 

QPO(X) = 0. 

To prove that Q is a delta operator we need only show it is shift invariant. 
First note that AQ = QA since 

Q4n(x) = Q k;. (9 Pva-k@) sk 

= 
k;o (3 tn - ‘+I Pn--k-l@) sk 

= n k;. (” i ‘) ~~-k&) sk = WG&) = %?&(Xh 

where we have used the identity 

(n - k) (1) = n (” ; ‘) . 

The next to last equality is, by definition of the operator Q, the recurrence 
formula (*) with n - 1 in the place of n. Thus, AQp,(x) = QApn(x) for 
all n; by the familiar linearity argument, this implies AQ = QA, whence 
AkQ = QAk for all positive integers K, and finally by the First Expansion 
Theorem that Q is shift-invariant. Thus,p,(x) is a Sheffer set associated with 
the delta operator Q. 

To prove the converse, let p,(x) be a Sheffer set relative to the delta 
operator Q with basic set pJx>, and let A be an arbitrary delta operator. By 
the isomorphism theorem (see also Proposition 4 of Section 4) it is easily 
shown that an invertible shift-invariant operator R exists with the property 
that Q = AR. From this, the proof is concluded as follows. By the binomial 
theorem (Proposition 6 of the preceding section) we have 

h(x + Y> = c (;) $kb) !&-k(Y). 
k>O 

Apply Q = AR to both sides, recalling that y is a parameter, and obtain 

(A&4 (x + Y) = c (“k) A%(x) !&-k(Y)* 
k>O 
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Now interchange x and y, as we may since the left side is symmetric in x 
and y, and then operate with the operator R-l. This gives 

Again permute x withy, and recall that ARp,(x) = &-r(x). The right side, 
therefore, equals 

Setting y = 0 gives 

&z(x) = C (k ” 1) ~lc-l(x) IT%-Ayllv=o (n - k + 1). 
k>l 

Defining 

[R-%k-l(Y)],=, @) = sk and so = 0, 

we find 

&n(x) = c (;) Pkcx) ‘a-k * 
k>O 

Q.E.D. 

7. UMBRAL COMPOSITION 

In its most primitive form, umbra1 notation, or symbolic notation as it was 
called by invariant theorists in the past century, is an algorithmic device for 
treating a sequence ur , a2 , a, ,... as a sequence of powers a, u2, a3 ,.... Com- 
putationally, the technique turned out to be very effective in the hands of 
Blissard (after whom the device is sometimes named), Bell, and above all 
Sylvester, to name only a few. Several authors attempted to set the “calculus,” 
as it somewhat improperly came to be called, on a rigorous foundation; the 
last unsuccessful attempt is Bell’s paper of 1941. The present author observed 
in 1964 (in “The Number of Partitions of a Set”) that all the mystery of the 
umbra1 calculus disappears, if we only consider a sequence a, as defined by a 
linear functional on the space of polynomials: a, = L(x*). The description 
of the sequence is then condensed into the properties of the linear functional 
L; only a prejudice would prevent anyone from placing such a definition of a 
sequence a,, on a par with a definition by recurrence or by generating function. 
In fact, the success of the umbra1 notation shows that in many cases the 
definition by a linear functional is preferable. 
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If a,(x) is a polynomial sequence, then there is a unique linear operator L 
on P such that L(xn) = a,(x). We say that L is the umbra1 representation of the 
sequence a,(x). 

We develop the umbra1 device in a form leading to a general result which 
embodies some of the more recondite indentities satisfied by special poly- 
nomials. 

An umbra1 operator is an operator T which maps some basic sequence 
pm(x) into another basic sequence ~Jx), that is, TpJx) = q%(x). Note that an 
umbra1 operator is in general not shift-invariant. To motivate this definition, 
we require another definition, the umbra1 composition of two polynomial 
sequences: 

a,(x) = i UnkXk 
k=O 

and b,(x). This is the sequence of polynomials en(x) defined by 

c,(x) = i %&c(X). 
k=O 

We use for umbra1 composition the notation 

44 = 4W)). 

When a,(x) = xn, we simply write 

c,(x) = b(x)“. 

There is a simple (though, if we are to judge by historical standards, not 
obvious) connection between umbra1 operators and the umbra1 composition 
of basic polynomials. For if T maps xR to ~Jx), then 

4q(x)) = Tdx), 

so that umbra1 composition of polynomials is simply the application of 
umbral operators, and conversely. 

Umbra1 composition of polynomials has been widely used; our present 
objective is to study the umbral composition of Sheffer and basic polynomials, 
thereby “explaining” a great many formulas from the intricate literature on 
special polynomials and mechanizing the device for guessing and proving 
them. 

A simple instance of the use of umbra1 notation is the definition of a 
polynomial sequence of binomial type, which can be umbrally stated as 

P(X + YY = [P(X) + P(Y)ln; 
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similarly, the binomial property of Sheffer polynomials becomes 

s(x + Y)” = [PC4 + 4Y)ln. 

PROPOSITION 1. Let T be an umbra1 operator. Then T-l exists and 

(a) the map S-+ TST-1 is an automorphism of the algebra 2 of shift- 
invariant operators; 

(b) T maps every sequence of basic polynomials into a sequence of basic 
polynomials; 

(c) if Q is a delta operator, then P = TQT-1 is also a delta operator; 

(d) T maps every Sheffer set into a Shefler set; 

(4 ~ff==s(Qh h 0 f w ere s t is a ormal power series, then TST-I = s(P), 
where P is as in (c). 

Proof. Tp,(x) = q%(x) for two given basic sets. To prove (a) we have the 
string of identities: 

TPp&) = Wp,&)) = nTp,-&) = np,-d4 = QU) = QTP&) 

and since every polynomial is a linear combination of the p,(x)‘s, we infer 
that TPp(x) = QTp( x ) f or all polynomials p(x); that is, TP = QT. It is clear 
that T is invertible, since it maps polynomials of degree n into polynomials 
of degree n, for all n. Hence, TPT-1 = Q; whence, TP@T-1 = 8” for all 
n > 0. Let S be any shift-invariant operator and let the expansion of S in 
terms of P be (first expansion theorem) 

s= c anpn. 
n>O n! 

Then 

(1) 

and, thus, TST-1 is a shift-invariant operator. Furthermore, the map 
S-+ TST-1 is onto since any shift-invariant operator can be expanded in 
terms of Q. Thus, the map is an automorphism, as claimed. 

Part (c) follows upon remarking that for delta operators the constant coeffi- 
cient a, vanishes while a, # 0. This also proves (e). 

To prove (b), let In(x) be a basic sequence with delta operator R. 
Let S%(X) = Tr,(x) and let S = TRT-l. By (c), S is a delta operator. Now, 

Ss,(x) = TRT-4,(x) = TRr,(x) = nTr,-,(x) = ns,-,(x). 



708 ROTA, KAHANER, AND ODLYZKO 

To complete the proof that s,(x) are the basic polynomials of 5’ we need 
only show that ~~(0) = 0 for n > 0. Now we can write 

Y,(X) = c QkPkW~ 
k21 

since a, = 0 because r,(O) = 0. Hence, 

Tr~tx) = k;l akqk(x> = s,(X) 

so that s,(O) = 0, n > 0, as desired. 
To prove (d), let s,(x) be a Sheffer set relative to the delta operator Q, 

and set &(x) = R,(x) and P = TQT-l. By (c), P is a delta operator, and 
trivially P&(x) = n&-,(x). Q.E.D. 

In view of the preceding result, it follows that the umbra1 composition of 
two sequences of basic operators is again a basic sequence. A similar pheno- 
menon holds for Sheffer sets. 

PROPOSITION 2. Let Wr,(x) = s,(x), where both are Sheffer sets. Then 
W = S-ITR, where R and S are the invertible operators of r,,(x) and s,(x) 
and where T is the umbra1 operator mapping the basic set p,(x) of r,(x) to the 
basic set of qn(x) of S%(X). 

Proof. Obvious. 

COROLLARY. The umbra1 composition of two Sheffer sets is a Sheffer set. 

The next result determines the operators corresponding to umbra1 compo- 
sition. 

THEOREM 7 (Umbra1 Composition). Let SJX) and tn(x) be Shefer sets 
relative to the delta operators Q and P, and to the invertible shift-invariant 
operators S and T, respectively. Let qn(x) and pm(x) be the basic sets for Q and P, 
and let the indicators of S, Q, and P be 

s = s(D), Q = q(D), P = P(D), 

where s(t), q(t) and p(t) are formal power series. DeJine Y,(X) to be the umbra1 
composition of sn(x) and tJx), in symbols 

in = Sn(f(X>). 

Then r%(x) is a Sheffer set relative to the shift-invariant operator 

W=) = t(D) s(p(D)) 
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and the delta operator 

having as basic set the sequence 

!74P(X))* 

Proof. We begin by establishing the special case where S and T are the 
identity operators, so that we wish to find the delta operator of the sequence 

u,(x) = s&W, h h w ic we know to be a basic sequence by Proposition 1. 
Thus, let V: xn *p,(x) be an umbra1 operator. Then u,(x) = Vqn(x), and 
by (c) of Proposition 1 the delta operator VQV-1 of u,(x) is of the form 

(Z(P) = !dPPN as d esired. Next, suppose that T is the identity operator, but 
not S. We study the sequence s,(p(x)). But 

q&(x)) = V&(X> = vs-lqn(x>, (*) 

ad from ~sdx) = qn(dx)) we infer that qn(x) = Flp,(p(x)), SO that, 
substituting in (*), we obtain 

s,(p(x)) = KS-IV-lqJp(x)) = vs-lv-lu,(x). 

This proves that it is a Sheffer sequence relative to the basic set u,(x) and the 
shift-invariant operator VSV-l; and VQV-l = q(p(D)), VW-l = s(p(D)), 
as follows from part (e) of Proposition 1. 

Now to the general case, S and T arbitrary. By definition we have 
t&d = T-1~,(4, and T,(X) = T%(P(x)); 

thus, we are reduced to the previous case, and the proof is complete. 
Several special cases of the preceding theorems are worth stating. A Sheffer 

set relative to the delta operator D, namely, ordinary differentiation, is called 
an Appell set. The theory of Appell sets is quite old, in fact classical enough 
to be included in Bourbaki. 

COROLLARY 1. If p,(x) and qn(x) are basic sets with delta operators 

P = p(D) and Q = q(D), then p,&(x)) is a basic set with delta operator 

Pk?W- 

COROLLARY 2. If se(x) and tn(x) are AppeZZ sets, then sJt(x)) is an AppeZZ 
set with operator ST; in particular, sJt(x)) = tn(s(x)), 

COROLLARY 3. If Ye is a Sheffer set, then there is a unique Sheffer set 
s,(x), called the inverse set, such that rn(s(x)) = xn. If p,(x) and q*(x) are the 
corresponding basic sequences, then the basic sequence of T,(s(x)) is pn(q(x)). 
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The following result gives the solution of the so-called “problem of the 
connection constants.” 

COROLLARY 4. Given Shefleer sets, u,(x) relative to the delta operator 
U = u(D) and the invertible operator W = w(D), and&(x) as in Theorem 7, the 
constants s,~ such that 

are uniquely determined as follows. The polynomial sequence, 

S*(X) = i S,kXk, 
k=O 

is the Sheffeer set with delta operator u@-‘(D)) and invertible operator 

~P-‘(W~P-‘(D)>~ 

The following result gives one of several closed-formula expressions for 
the coefficients of the Sheffer polynomials. 

COROLLARY 5. Let s,(x) be Sh&et polynomials as in Theorem 7 and let V 
be an umbra1 operator such that Vs,(x) = u,(x) and VYn(x) = v,(x). Then 

s&) = f vk(x) - [~Q%Wlx..o . k=o k! 

Proof. By the second expansion theorem we have 

V%a(x + Y> = c k~O + [SQ”vsn(~)l; 

setting y = 0 and applying the operator V-r to both sides the result follows. 
The following special case is useful. 

COROLLARY 6. Suppose p,(x) and q,,(x) are the basic sequences for the delta 
operators P andQ, respectively. If q,,(x) is inverse to p,(x), then 

A@> = k& $ [Qkxnle=o - 

Conversely, if the foregoing identity holds for a given delta operator Q, then the 
p,(x) are the basic sets for the inverse operator. 
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COROLLARY 7 (Summation Formula). Let f(x) be uny polynomial. Then, 
in the notation of the preceding corollary. 

The prototype of this formula is the classical formula of Dobinsky for the 
exponential polynomials (see III). 

PROPOSITION 3. Let W:p,(x) -+ xn be an umbra1 operator, and let Q be 
the delta operator of p,(x). Then 

Wxp(x) = xWQ’p(x) 

for all polynomials p(x), OY w’ = xW(Q’ - I). 

Proof. Set r,(x) = (Q)-‘pR( ) x , so that XT,(X) = p,+i(x) by Theorem 4. 
Now, WXY,(X) = xn+l = xWpla(x), so that 

Wx(Q’)-l P,(X) = ~WP,(X>- 

By linearity, this holds for all polynomials p(x); 

Wx(Q’)-l P(X) = xWp(x), 

replacing p(x) by Q’p(x) the result follows. 
It would be of interest to develop a theory of operator differential equations 

in the Pincherle derivative strong enough to give an explicit solution to the 
previous “differential equation” for the umbral operator W. An example of 
umbra1 operator is Wp,(x) = ulcpk( x , w ic ) h’ h is a Sheffer set whenever pk(x) is. 
If Q is the delta operator of pB(x), then u-‘Q is the delta operator of akpk(x). 
Similarly, p,(ax) is a Sheffer set, and if Q = f (D), then the delta operator for 
p&ax) is f (a-‘@. Finally, if qk( x is a basic set, then the basic set of the ) 
delta operator QEa is easily seen from formula (4) of Theorem 4 to be 
Y,(X) = XQ~(X - nu)/(x - na). This generalizes the idea behind the Abel 
polynomials. Summarizing, we have the following. 

PROPOSITION 4. If s,(x) is a Sheffer set, so is a%,(bx) for any a and b; 
if it is a bask set, so are ans,(bx) and xs,(x - nu)/(x - na). 

The preceding result “explains” the so-called “duplication formulas” 
found in the literature, namely, formulas expressing p,(ax) as a linear combi- 
nation of plc(x). We shall see some instances of this device later. 
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8. CROSS-SEQUENCES 

A cross-sequence of polynomials, written p?](x), where X ranges over the 
field and n over the nonnegative integers, is defined by the following pro- 
perties: 

(a) for fixed h, @“l(x) is a polynomial sequence* ?a , 
(b) for any h and p in the field and any x and y, the identity, 

p!++ + Y) = kgo (I) P!?(x) PkPk(Y), 

holds for all n. 
The theory of cross-sequences (of which several examples are uncon- 

sciously present in the literature) parallels in many ways the theory of 
sequences of binomial type, and we shall shorten the by now familiar devices 
in the proofs. It will always be assumed that the upper variable ranges over 
the field and the lower one over the nonnegative integers. 

THEOREM 8. A sequence p:](x) is a cross-sequence ;f and only if there exists 
a one-parameter group P-A of shift-invariant operators and a sequence p,,(x) of 
binomial type such that 

p!](x) = P-“p,(x). 

(Thus, for fixed h a cross-sequence becomes a Sheffzr sequence relative to the 
operator P^.) 

Proof. We first show that every sequence defined by the right side of 
(**) is a cross-sequence. Recall that the group property states that 

Thus, apply P-” to the binomial identity satisfied by the p,(x), thereby 
obtaining 

P-“p,(x + r) = i (1) P!?(x) Pn-k(Y)* 
k=O 

Now permute x and y, and then apply P--LI to both sides, to obtain (*). Now 
to the converse. First, note that the sequence p,(x) = p:](x) is of binomial 
type; setting p = 0 in (*) and applying Proposition 3 of Section 5, we infer 
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that &l(x) is a Sheffer set relative to a shift-invariant operator which we shall 
call PA, as in (**). From (*) we have 

P-“p,(x + y) = i (3 Pk(X)Pi2k(Y), 
k=O 

and applying P-u to both sides, we infer that 

p-“(p%(x + Y)) = to (3 Pi%>PKk(Y). 

But the right side equals P-“-“p,(x + y), again by (*). This gives 
P-UP-~ = P-U-~ and completes this proof. 

COROLLARY. If a sequence piA] is a cross-sequence, then there exists delta 
operators Q and Rral such that pi01 = c # 0, 

pp(0) = 0, n>O 

Q&'(x) = np:&, n> 1, 

RIIy$~‘(x) = np$$(x). 

(***I 

PYOO~. Let Q be the delta operator of p,(x), and let R[al = PQ; then 
(***) follows from (**). 

PROPOSITION 1. The coeficients c(n, k, A) of a cross-sequence, 

P-^pJx) = p:‘(x) = C c(n, k, A) xk, 
k>O 

are polynomials of degree at most n in the variable A. 

Proof. By Corollary 7 of Theorem 7 we have 

P%d = kzo $ [P-hQk~n]a.mo , 

where Q is the delta operator of the inverse of this sequence p,(x). 
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Writing P-A = p(D)” and q(D) = Q, we have 

h!c(n, h, A) = [P-AQkxn]3c+, = [Dnp(x)n q(~)‘“1~~, 

whence the conclusion. 
The proof does not provide an explicit method for the computation of the 

coefficients c(n, K, h), but see Proposition 4. 
A Steffensen sequence s!](x) relative to a cross-sequence pi’]( is a sequence 

satisfying the identities 

sk+“‘(x + y) = k;. (9 sP(x> Pi%(Y), 

for all n, h, p, X, y: Steffensen sequences are characterized by 

PROPOSITION 2. The following conditions are equivalent : 

(a) s[‘l(x) is a Steffensen sequence* II , 

(b) there exists a delta operator Q and a one-parameter group of shift- 
invariant operators P-” such that 

Q$'(x) = n&(x), 

P-%;‘(x) = s?‘(x); 

(c) There exists a cross-sequence p!‘(x) and an invertible shift-invariant 
operator T such that 

s)‘(x) = T-‘p!‘(x). 

The proof follows well trodden paths and is omitted. 

PROPOSITION 3. Let so’ be a Stefknsen sequence relative to a shift- 
invariant operator T = (8’))1, as in the preceding proposition, with s!‘(O) = 1 
for all A. Then the sequence 

x$-‘(x), 

is a sequence of binomial type. 

Proof. Use Theorem 4. p,(x) = XS~~](X) is the basic sequence for the 
operator Q, by the Rodrigues formula. 
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Writing 

xspqx) = xP-“-lx-lp,+l(x) 

and comparing with (6) of the corollary to Theorem 4, we find that the 
right side is basic with delta operator R = PQ. 

PROPOSITION 4. Suppose that I - P = Q, where Q is the delta operator 
of p,,(x). Then for fixed a and for a Stefensen sequence p:](x) relative to Q 
we have that 

&-“‘(a) c*> 

is, for fixed a, a Sheffer sequence relative to the difference operator A = E - I. 

Proof. We have 

P7Z 
rA+l-sl(x) _ ptyl(x) 

= PAtn-l(I - P)p,(x) = nP-A+n-l$n-l(x) 

= np~I~+ll(x), 

which proves the assertion. 
It follows from Corollary 1 to Proposition 2 of Section 5 that any linear 

combination of polynomials of the form (*) is again a Sheffer set relative to A. 
In particular, the coefficients c(n, k, h) (polynomials, by Proposition 1) of 

p;'(x) = c c(n$9 3 Xk, 
k>O 

have the remarkable property that c(n, R, x - n) is a Sheffer set for A. An 
explicit expression could*be constructed. We shall not develop in detail here 
the theory of umbra1 composition of Steffensen sets, only a few remarks. 

PROPOSITION 5. For Appell cross sequences, namely of the form 
pp(x) = P-Ax\x” 7 we have the umbra1 composition 

p[“‘(p[“‘(x)) = pLA+“‘(x). ?a n 

Proof. Apply Corollary 2 to Theorem 7. 
Every invertible shift-invariant operator P can be written in the form 

P = eF for some shift-invariant operator (which is never invertible). Indeed, 
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say that P = I + S, where Sl = 0. Then F = log(1 + S) is well defined, 
and P = eF. Thus, 

P-” = exp(- AF). 

Note that F is not necessarily a delta operator, though Fl = 0. We call F the 
generator of the cross-sequence &l(x). Thus, an operator F is the generator 
of a necessarily unique cross-sequence of polynomials, if and only if F( 1) = 0. 

PROPOSITION 6. (a) If F and G are the generators of cross-sequences 
prl(x) and 4$‘](x) having the same basic sequence, then F + G is the generator 
of the cross-sequence 

ewAGpbl(x) = eeAFqtl(x). 

(b) If P is any invertible operator, then 

P-^p:l(x) 

is a cross-sequence when p?](x) is one. 

9. EIGENFUNCTION EXPANSIONS 

It is reasonable to surmise that a Sheffer set of polynomials over the real or 
complex fields should be obtainable by eigenfunction expansion of differ- 
ential, difference or other Q-operators in a suitable Hilbert space. We establish 
the truth of this expectation in the real case. The key step consists in singling 
out a “natural” inner product associated with a given Sheffer set. To this end, 
let s,(x) be a Sheffer set relative to the invertible operator S and the delta 
operator Q. Let W : S-(X) ---f x” be the umbra1 operator sending s,(x) to xn. 
For arbitrary polynomials f(x) and g(x) set 

(f(x), g(x)> = KW) (Q) Sg(%=o 9 
we have then the following. 

(*) 

PROPOSITION 1. The bilinear form (f(x), g(x)) defined by * on the vector 
space of all polynomials is a positive-dejinite inner product. 

Proof. It suffices to show that (sk(x), s,(x)) = (sn(x), s,(x)) = 0 for k # n, 
and (sn(x), s,(x)) > 0 for all 1z and k. Now, 

(s&4, s&N = [Q”WG=o = [Q’“P&)~,=~ = @Ok pn-dO) = Wk a,, , 
where p,(x) are the basic polynomials of Q. This completes the proof. 

We shall call (*) the natural inner product associated with the Sheffer set 
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sJx>. We shall now require some notions of Hilbert space theory, such as 
one finds in any book on functional analysis. 

THEOREM 9. For any Shefler sequence sn(x) with delta operator Q and 
operator S there exists a unique operator of the form 

uk + Xvk 

A = k;l (h - l)! Q 
k 

with the following properties : 

(a) A is essentially self adjoint (and densely defined) in the Hilbert space H 
obtained by completing the space P of polynomials in the associated inner pro- 
duct (*); 

(b) The spectrum of A consists of simple eigenvalues at 0, 1,2,... ; the 
eigenfunction associated with the eigenvahe n is the polynomial s,(x); 

(c) the constants uk and ok in the previous expression for A are given by 

uk = - [(log 8)’ +?&)]s,~; vk = pk’(O)> 

where pk(x) are the basic polynomials for the delta operator Q. 

Proof. We begin by taking the Pincherle derivative of both sides in the 
expression 

S-1Ea = c d&n, 
n>a * 

obtained from the second expansion theorem: 

(S-l,?+)’ = C J!I$Ln~-lQ’; 

9Z>l 

multiplying by (Q’)-1 Q and simplifying, 

(- S-18’ + a) S-lEa(Q’)-1 Q = c q nQ% = TS-lE”, (**) 
n>1 . 

where we have set 

T = (- S-?!3’ + a) (Q’)-l Q = (a - (log S)‘) Q(Q’)-l. 

Next, expand the operator T in powers of Q, that is, compute the coeffi- 
cients b, in 

T = k;a+Qk: b/c = [TPdX>]o=o , c***> 
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as in the first expansion theorem. Set 

%-l(X) = e44 
Rodrigues’ formula now reads 

for n > 0. 

whence 

(Q'Y P&) = !z&)> 

(Q'F QP&> = w&)~ 

Thus, for K = 0 we have b, = 0, and for K > 0 

P-P&)lz=o = 4(a - (1% 3’) %1(~)1wJ 
= &hc-l(O) - 41% S)’ q?&)],,, = km, + ku, , 

where 

UK = - [~-1~‘!7,-&)l,4 = - [(log S)’ Q&&)1, , 
% = !7k-l(O), k >O. 

NOW from (** *) we have for any polynomial f(X), 

TS-lf(x + a) = c k~O $ QYS-Y@ + 41. 

But, as remarked previously, 

s-lf(x + a) = c 
lag0 

9 Qy(u>, 

so that placing the right side into the brackets we obtain 

where we have interchanged the order of summation. Permuting x and a once 
more, we obtain 

TS-lEa = nc,u [ ;o~Qkd4] $- , 
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and comparing this with the right side of (**), we see that the coefficients 
of the two expansions must agree. Upon changing a to x, we obtain 

with 

61, = k(u, + XVyJ 

The operator 

is clearly well defined on the set of all polynomials. We have shown that 
As,(x) = m,(x) for all rz > 0, so that the Sheffer set s,(x) is a set of eigen- 
functions of A; since it spans that Hilbert space H we infer that A is an 
unbounded essentially self-adjoint operator in H having the nonnegative 
integers as its simple spectrum, with eigenfunctions s,(x), as we wanted 
to show. 

COROLLARY 1. Let R be a delta operator with basic polynomials yk(x). Then 
the operator A defined previously can be expressed in the form 

ak + Xbk 
A = 1 hr R”, 

k>l ' 

with 

Ok = - [(log s)’ Q(Q')-l Tk(X)]z=O , 

bk = [Q(Q'>-l rk(x>lr=O . 

Proof. From the preceding proof we have 

% + ab, 
T= C h, Rk, 

k>O . 

whence the conclusion upon interchanging the roles of the variables x and a, 
as in the proof of Theorem 8. 

The computation of the coefficients ak and b, is greatly simplified by use 
of the corollary to Theorem 4 and by various umbra1 devices. 

The generating functions associated with the a, and b, are now easily 
found; they are immediate consequences of the isomorphism theorem: 

409/42/3-I.5 
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COROLLARY 2. Let Q = 4(R) and S = 4(R), where 4 and # are formal 
power series. Then 

f(t) 4(t) and z”%t*=-----;--. 
w 4 (t) 

By changes of variables, these identities can be recast in a form suitable 
for computation in any specific case. One question of interest is the following. 
When is the operator A a polynomial in the operator RI The answer is 
easily found. 

COROLLARY 3. A is a polynomial in R ;f and only ;f 

44) = exp (1 p(t)-’ dt) Y 

#(t> = exp ( j dt)/PW dt) y 
where p and q are polynomials, andp(0) = 0 and p’(O) # 0, as well as q(0) = 0. 

Proof. From the preceding corollary we find the differential equations 

d’(t) _ 1 ---9 ?w n(t) 
4(t) p(t) w - PO ’ 

whence, integrating 

W = exp ( j P(t)-' dt) , #CO = exp ( j 4WN dt) . 

Now, C(O) = 0 and 4’(O) # 0, b ecause Q and R are delta operators; it follows 
that the partial fraction expansion of l/p(t) must contain the summand l/t, 
and this happens only if p(0) = 0 and p’(0) # 0. Similarly, +(O) # 0 because 
the operator S is invertible. This requires that the partial fraction expansion 
of q(t)/p(t) shall not contain the summand l/t, and, in view of p(0) = 0, this 
requires that q(0) = 0. Q.E.D. 

Another relevant question in the present context is the representability 
of the inner product (*) by integral operators, evaluations of a function and its 
derivatives at specific points, etc. It would take us too far afield to treat this 
question here; suffice it to say that it can be completely answered. 

The simplest case of (*) occurs when S = I and Q = D, the ordinary 
derivative. We have then 

[p(D) q(x)]z=O = b /z~-a~v~~, p(x+iy) q(x + iy) e-(“2+ve) dx dy, 
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an inner product of frequent occurrence in quantum field theory. From the 
recurrence relations for orthogonal polynomials it is easy to determine (follow- 
ing Sheffer) all Sheffer sets which are orthogonal polynomials over an interval 
of the real line. Except for linear changes of variable, they are the following: 

(a) for Q = D, we must have S = Ea exp(D2), and we find a generaliza- 
tion of the Hermite polynomials, orthogonal over (- co, co); 

(b) for Q = D/(D - I) we must have S = (1 - D)o+l with 01 > - 1, 
and we find the Laguerre polynomials of order 01, treated later; 

(c) for Q = log(1 + D) we must have S = EIY(I + D)“, q~ # 0; 

(d) forQ = log[b(D - c)/(c(D - b))], then S = (1 - D/c)‘y (1 - D/b)@; 
b # c and bc # 0. 

These are essentially the Pollaczek polynomials. A similar study can be made 
in the case of discrete orthogonal polynomials. The polynomials under (c) 
are Sheffer polynomials relative to the exponential polynomials; they seem 
not to have been studied. It is interesting to speculate on the possible 
generalizations of the notion of classical orthogonal polynomial that are 
suggested by the “natural” inner product (*). 

10. HERMITE POLYNOMIALS 

We show that classical formulas pertaining to the Hermite polynomials, as 
found for example in Jackson or Rainville, can be obtained by specializing the 
preceding results. Define the Hermite polynomials of variance v to be the 
Appell set (as we shall see, the Appell cross-sequence) whose operator is 
the Weierstrass operator (so dubbed by Hirschman-Widder) 

w,p(x) = (2d,,2 -1 e-tz’2wP(x + t) dt. s (*) 

The ordinary Hermite polynomials correspond to variance one. Thus, 

H;‘(x) = W;lx”, DH;)(x) = n&!,(x), 

H~)(x + y) = kTo (z) y”-kf@)(x), etc., 

trivially from Section 5. The indicator of the operator W,, is computed by the 
first expansion theorem: 

WV = c &!D”, 
n>o n! 
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with 

a’“’ = (2r;)l,2 -1 e-t2i.2etn dt = wn’2n! . (1 + (- 1)“) 
n s 2n/2(n/2)! 2 

t 

@12. 1 . 3 . 5 . . . (n - 1) for n even 
(**) 

= 
0 for 12 odd. 

We set ur’ = ern/2bn . Thus, 

(***I 

We infer that H:‘(x) = Hl]( x is a cross-sequence. Note that the definition ) 
of the Weierstrass operator by (*) is valid only for ZI > 0, but (***) always 
holds. Next, 

Hk+yx + y) = c (2) i$+) fti(Y) 
k>O 

setting y = 0, 

and finally 

Hk’(x) = k-o (3 xy- 7y2 6, ) 

where b, are given previously; whence we glean the simpler expressions in 
terms of the classical Her-mite polynomials 

fp(x) = &2 Hn (+ ’ 

as we could also have done by umbra1 methods. 
Proposition 5 of Section 8 gives the umbra1 composition formula, 

H~l(H1”l(x)) = H?‘(x), (*I 
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and in particular the classical 

K4W)) = 2”‘W3 (+) e 

The generating function 

is also immediate from Section 5, Proposition 5. 
The (classical) Rodrigues formula follows using the Pincherle derivative. 

Starting with 

and 

era~2v(dl) ecEaizwf(x) = (d - x) f(x) 

~-~~z4.“f(x) = [(e--2)’ + xf?q f(x) 
= (- 1) (vD - x) e-BD8/2f(x), 

c*> 

setting f(x) = xn-l and iterating, 

as desired. 
Note that this also proves the recurrence formulas, stated for e, = 1 

for convenience, 

H,(x) = xH,+&) - H;-,(x) = XI&-&) - (fi - 1) H&4 

from which the differential equation can be obtained by application of 
H,‘(x) = nH,-,(x) and iteration. We prefer, however, to derive the spectral 
theory directly from the general results of Section 9. Operational identity (*) 
can also be used to give a quick proof of the formulas of Burchndl-Feldheim- 
Watson. Indeed, from 

(D - x)nf(x) = er*/2Dne-ra/2f(x) 

we find, upon applying Leibniz’s formula, that the right side equals (fol- 
lowing Burchnall) 
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and settingf(x) = H,(x) we find 

H,+,(x) = (- 1)” (D - x)” H,(X) 

zzz go (i) (- lYk m-r %n+kW HkM 

as desired. Similarly we can derive a formula for expressing H,(x) H,(X) 
as linear combinations of Hk(x) by Theorem 6. 

We find that 

for any polynomial p(t). Now 

Now (0. below) 

Therefore, ifj < k say, then 

j! W(k-5+di2 if ?z.EK$-j(2), i=(j+n--k)/2, 
O<i<j 

otherwise, 

and we conclude that 
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Proposition 1 of Section 9 shows that the Hermite polynomials are ortho- 
gonal relative to the inner product 

(f(4, gb9)u = W*f) (9 ~%&>lm - 
We next find out when this inner product coincides with the classical inner 
product 

[f(x), g(x)]* = (2;)"2 -1 e-22'2uf(4 g(x) dx, s zI > 0. tt) 
By Rodrigues’ formula, followed by an integration by parts, we find 

[fJ~)(x), &)I, = & j”, e-22’2vWW dx 

e-t”‘2”Dng(x + t) dt],, 

where T,: f(x) +f( xe, is an umbra1 operator. By linearity it follows that ) 

Lf(4 &>lv = WdWJJ) (0 &m)lr=o 1 (37) 

for all polynomials f and g. On the other hand, we verify upon replacing f 
and g by Hermite polynomials that 

so that the two inner products coincide only for v = 1. Both inner products, 
however, are symmetric and nondegenerate for all values of v; for (38) this is 
true by definition, and for (37) it is verified as follows, Setting 

we find 

f(x) = &p(x) 

[fJ?)(x) &)I = P’dW”d4)l = 9 v z 0, 
and for g(x) = H*(X) this becomes 
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as desired. For v > 0 this inner product is positive-definite. However, 
definition (37) is valid for arbitrary u and combined with the results of 
Section 9 gives a formally valid eigenfunction expansion, whose inner product 
is nondegenerate but not positive definite in general. On the other hand, 
the positive-definite inner product (38), as defined in Section 9, gives a 
Hilbert-space eigenfunction expansion for arbitrary V. The interaction of the 
two bilinear forms for nonpositive ZI leads to interesting analytic developments 
which we are forced to leave to a later publication. There are also interesting 
applications to Feynman’s integral. There remains to be found the operator 
of which the Hermite polynomials are the eigenfunctions, and this is given 
at once by Theorem 9. We have (log S)’ = D, since S = IV, , so that the 
formulas given there yield us = -I, z1r = 1 and all other coefficients 0. 
We conclude that the Hermite polynomials are a complete sequence of 
eigenfunctions, with eigenvalues n, of the operator 

A =D2-xD 

in the Hilbert space which is the closure of the polynomials in (t). That such 
a closure is the set of all square-integrable functions follows from a (well 
known) limiting argument. The present treatment shows that, aside from 
this one fact from analysis, the entire theory of Hermite expansions can be 
made purely algebraic. 

11. LAGUERRE POLYNOMIALS 

One of the simplest cross-sequences is 

M)1(x) = (I - D)-" xn, 

or, more explicitly, 

My(x) = c (3 (A + k - l)k. xn-lc. 
k>O 

These polynomials seem to have a scarce literature. For h = 1 they were 
considered by Sheffer, with D replaced by D/2 they were studied by Peters 
under the name “Boole polynomials of the second kind.” Note that for h = 1 
they give, after dividing by n!, the partial sums of the exponential function. 

From the properties of cross-sequences we immediately infer that 

&f[A+u’(X) = c (1) (h + k - l)k ME,(x), n 
k>O 
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as well as 

pp+‘“‘(x + y) = k;. (3 MP(x> J4z%Y)? n 

which explains several classical binomial identities. Moreover, since the 
M:](X) are an Appell set, Corollary 2 to Theorem 7 implies the composition 
law 

&‘(MIB1(~)) = M;8’(M[“(~)) = J&+“(X). 

The cross-sequence ME](x) is related to polynomials of Laguerre type, 
which are the Sheffer sets relative to the delta operator 

Kf(x) = - jm e-tf’(x + t) at, 
0 

called the Laguerre operators. From the first expansion theorem we have 

K= c %Dn; 
j 

cc 
a,=-n e-ttn-l& = - nl -, 

VZ>l 0 

so that 

K=-D-Dz- . ..=Dl(D-I). 

The basic polynomials of the Laguerre operator are easily computed from 
Theorem 4, formula (3): 

L,(x) = x(D - I)” xn-l, (“> 

called the basic Laguerre polynomials. From 

exDe-” = D - I and exDne-” = (D - I)“, 

we obtain the classical Rodrigues formula, 

-w) = xeXDne-Xx71-l 

From formula (*) we find by binomial expansion that 

-L(x) = il g (; I:, (- Xjk, 

where the coefficients 

n! n-l 
-( 1 k! k-l 

are known as the (signless) Lah numbers. 
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We shall be concerned with Laguerre type sets relative to the operators 
(Laguerre operators of order a): 

K, = I/(I - D)arl. 

Let us note here that for 01 > - 1, 

1 
KoLf(x) = qa + 1) s 

m t=wtf(x + t) dt, 
s 

as is easily verified by the first expansion theorem. The Sheffer sets relative 
to these operators are polynomial sets Lo], classically known as Laguerre 
polynomials of order 01. (Note that our definition of Laguerre polynomials 
differs from that used by many authors by a factor of n!. It does, however, 
agree with Jackson’s notation.) 

Again, by definition of the Sheffer polynomials we have 

Ljg’(x) = (I - D)“+lL,(x), 

(1 - 0)” L:)(x) = L?@(x). 

We infer from (*) the identity 

L?‘(x) = (I - .y+l x(D - I>” X+-l. 

Using the Pincherle derivative identity 

(D - I)” x - x(D - I)” = ((D - I)“)’ = n(D - q--l, 

we simplify this expression to 

L:‘(x) = (- 1)” (I - D)o+* xn = (- 1)” 1 (- 1)” (a 1, ‘jk Dkx” 
k>O 

= (- 1)” 1 (- l)k (3 x-@Dkx”+” 
k>O 

= x-a(D - I)” x”+” = x-aexD”e-xx”+a, 

which is the classical Rodrigues formula. 
Expanding the third formula on the right of the string of identities gives 

the coefficients of the Laguerre polynomials 

L?‘(x) = (- 1)” c (- 1)” (a ;, 41c (?qk x+-k 
k>O 
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The binomial theorem for Sheffer polynomials (Proposition 2 of Section 5) 
yields the identity 

L?‘(x+ y) = 1 (;)Lk(x)LkL(Y); 
k>O 

whence, upon applying the operator (1 - D)B+l to both sides, we obtain the 
first composition law 

L%+a+l)(x + y) = kso (1) L:?(x) LsdY). 

Further properties follow from the fact that 

L:)(x) = (- l)nM[-a-n’(x), n or ibiy(x) = L[-“-“l(X) (- 1)“. n 

Next we apply Theorem 7 to study the umbra1 composition of two Laguerre 
polynomials. A trivial identification of the various operators at hand yields 

@(L’@(x)) = (I - Jq3-m Xn = &$yyx) 

= (- l)R Lpyx). 

For /? = a we obtain the remarkable identity 

I$‘(L(“‘(x)) = 2, 

showing that all the Laguerre polynomials are self-inverse sets. This is true 
even of the basic Laguerre polynomials, which correspond to the case 
a=--1. 

So far we have considered only the umbra1 composition of L%‘(X) with 
L:‘(x) and of Mkl( x with MLBl(x). Umbra1 composition of ME’(x) with ) 
L:)(x) gives, by an application of Theorem 7, the Sheffer set relative to-oh 
surprise!-the delta operator O/(0 - I) and the operator I/(1.- D)(~+e+r), 
that is, the Laguerre polynomials again! In symbols, 

M:‘(L’q*)) = M~‘(L’“‘(x)) 

= L?+@(x). 

Piecing together these results on umbra1 composition, we are led to the 
following remarkable second composition law for Laguerre polynomials: 

ql)(L(%)(LW(. . . L’“qx)) . . .) 

L$-a2+“3-. . .+OiqX), k odd, 
&l I q-“+xg-‘. .-+I 

7z (4, k even. 
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When expanded in powers of x, this equation leads to several binomial 
identities, of which we only give a sampling: 

If R is even, 

( 
- a1 + cxa - cc3 + *.* + cxk 

m 1 

= Tl,...~--l>O (- l) T1+T8+."+Tk~1 yj ("2; "j (" - ;: - '2) ... 

X 
oLk-l - rl - r2 - *.* - r&a 

H 

C$ - r1 - ‘** - rk-1 

rk-l m - rl - “’ - rkwl ’ 

and if k is odd, 

The so-called “duplication formulas” for Laguerre polynomials (see, e.g. 
Rainville) are trivial consequences of Theorem 7; we shall only derive 
one of them to indicate the method. We are to express L,(ax) as a linear 
combination of &(x). By Section 7, the sequence L,(ax) is basic to the 
operator a-lD/(a-lD - I). We are, therefore, to find a formal power series 
f(t) such that a-lt/(u-lt - 1) =f(t/(t - 1)). An easy computation gives 
f(t) = t/[(l - a) t + a]. N ow, the basic polynomials for f(D) are computed 
by Theorem 4; they are 

p,(x) = x[(l - a) D + ul-jn xn-l 

= y (1) (1 - a)” u-J+ - l)k Xn-k 

k=O 

= il + (;: 7 ;, (1 - u)n-k (ax)k. 

If we now apply the umbral operator v : xk +&(x), then by Proposition 1 
of Section 7 the sequence V?,(x) will be basic for the delta operator 

vf(D) V-l = f( VDF) = f(K) = f PIP - 4) 

a-lD 
= u-lD--I’ 
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whose basic sequence is, as we have remarked, &(a~). Thus, we are led to 
Erdelyi’s formula 

L&x) = -&g (; 1;) (1 - 4n-k a’CL&+ 

For the Laguerre polynomials of order 01, Proposition 5 of Section 5 gives 
us the generating function 

c G%) tn = 1 @(t-l) 
fl20 ?l! (1 - t)a+l 

Since the generating function of ~Spl is easily seen to be 

c Ma% tn = 1 

l&>O n! (1 ext 

&p(x) = (- l)“L;-“-“j(X), 

we obtain the following interesting relation: 

L:-“)(x) 
c n! 

tn = (1 + t)” edzt. 
7220 

We will now generalize these relations and obtain generating functions for 
the sequences Ljla+bn)(x), where b is any fixed complex number. For 6 an 
integer these were first obtained by Brown, and Carlitz later generalized 
them to any b. 

A routine calculation shows that Lk+““) (x) is Sheffer relative to the delta 
operator Qb = - D(I - D)mb-r. Since, by formula (2) of Theorem 4, the 
basic polynomials for Qb are 

(- 1)” (I - lqbn+-l (I + la) XQ, 

we discover that L$+b”’ (x) is Sheffer relative to the invertible shift-invariant 
operator 

‘%a - (;:;;+I . 

If we now let Qb = qb(D), S,,, = ~(6, OL, D), and &l(t) = A(b, t), then by 
Proposition 5 of Section 5 we obtain 

tn = (~(b, a, A(6, t)))-1 @A(b,t), 
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which is the desired generating function. Further, since A@, t) is the (unique) 
formal power series solution to 

an easy calculation shows that 

A(--- l,t)= -A(b,--) 
1 - A(b, - t) . 

Similarly, we discover that 

s(- b - 1, - (Y, A(- b - 1, t)) = s(b, OL, A(b, - t)) . (1 - A(6, - t)). 

The spectral theory of Laguerre polynomials can only be sketched here. 
The classical inner product, 

LOX>, g(41a = low x”e-‘W &> dxj 

can be redefined so as to make sense not only for 01 > 0, but for all 01 (except 
when 01 is a negative integer). Indeed, as with the Hermite polynomials we 
find 

s 
m xae-%$)(x) g(x) dx 

0 

= jm Dn(xa+ne-2) g(x) dx = jm (- I>” xa+ne-xDng(x) dx 
0 0 

Z 1) nta+ne-tDng(x + t) dt 
I = qcf + n + l)[~n~,g(a!=, , 

Z:=O 

whereas, the inner product given by Proposition 1 of Section 9 is 

The two inner products do not coincide. The second inner product is, 
however, positive definite for all a; whereas, the first is symmetric for all 01 and 
gives 

[L:)(x), L:)(x)], = n! q(Y + 71 + 1), 

so that it is well defined, whenever 01 is not a negative integer. Nevertheless, 
the eigenfunction expansion still makes sense, and Theorem 9 readily yields 
the differential equation 

Lyjx) + (a + 1 - X)L$“(X) + n&(x) = 0. 
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Again we must leave a detailed analysis of these inner products to a later 
publication. 

We shall now generalize slightly the Laguerre operator K and consider the 
delta operators 

The Laguerre operator corresponds, of course, to LY = - /? = - 1. From 
formula (2) of Theorem 4 we find that the basic polynomials JEmB)(~) for 
La.0 are given by 

we see that the L,., form a group under convolution and that this group is in 
fact isomorphic to the multiplicative group of matrices 

1 P 
( 1 0 a’ CY # 0. 

This enables us to easily compute the umbra1 composition of the Jtss)(x). 
Thus, for example, we obtain 

which yields the binomial identity. Deeper properties can be obtained by 
developing the theory of Sheffer sets relative to these operators. 

12. VANDERMONDE CONVOLUTION 

The difference analogs of Abel polynomials, with delta operator E-bA, 
may be called the Gouldpolynomials and denoted by G,(x, b). By the corollary 
to Theorem 4, we readily find the explicit expressions for the GIC(x, 6); 

A,(x, b) = G&c, b)/k! = & (x + b%lk! 

=&(ybk). 
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We refer to Gould’s papers for comparison. The identity expressing that 
these polynomials are of binomial type is sometimes known as the Van&~- 
monde convoltltion, though the name is also applied to other identities. Gould’s 
(1961, 1 .l) is the generating function, a special case of Corollary 3 to 
Theorem 2. The binomial identity can be strengthened to 

go (3 (P + @) G.&> b) Gn-dc, b) = ‘(’ ; $; qxn G,(x + c, q. 

Gould’s inverse relations are straightforward applications of Theorem 2. 
Since 

(E-“A)” = ‘f (- l)n-j (7) Ei-nb, 

j=o 

we find that 

F(n) = i (- l)++j (7) f( j - nb) 
j=o 

is the inverse of 

which can be considered as the basic inversion formulas associated with 
Vandermonde convolution (a recasting of Gould (1962, 3.1 and 3.2)). 
Several special cases are discussed by Gould, in particular, his Theorem 2 
(1960). 

We next obtain the connection constants of Gn(x, c) in terms of 
G,(x, c - b). This is done most simply by expanding the first set in terms 
of the second. Now, 

Eb-cdG,(x, c) = Eb(E-%lG,(x, c)) 

= EbnG,&, c) = nG,& + b, c), 

and, therefore, 

(Eb-U)” G,(x, c) = (T& G,-,(x + kb, c); 
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whence, by Theorem 2 
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6(x + a, 4 = c 
k>O 

Gkcupk; - ‘) (Eb-~d)~ GJx, c), 

or 

G,(x + a, c) = ,c,,(;) G&, c - 4 Gn-AX + bh C); 

or, in Gould’s notation 

A,(x + a, c) = c A&, c - b) &-,(a + & 4. 
k>0 

For convenience we also write the inverse formulas, obtained by a change of 
parameters: 

A,(x + a, c - b) = i &(X, c) A,-,(a - bk, c - b). 
k=O 

In more classical notation, this pair yields the inversion formulas: 

fn(x + a) = f Fk(x) A?a-k(u - ‘% c - b), 
k-0 

F,(x + a) = i fk(x) &-,(a + & c). 

k=O 

This implies Gould’s main theorem (1962, 5.3 and 5.4) and has the advan- 
tage of a simpler formulation. Next, the polynomials (X + bk), are Sheffer 
relative to the delta operator EebA. Hence, the binomial theorem for Sheffer 
polynomials (Proposition 2 of Section 5) gives 

which is slightly deeper than the identity, obtained from the fact that the 

EaGk(x, b) = x ; a’+” (,k tx + a + bk)k 
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are a cross-sequence, namely 

x+a+-c 
( 
X+a+c+bn 

x+a+c+bn n 1 

=$oX;:;bk(“+;+bk) 
x+c 

( 
x + c + b(n - k) 

x + c + b(n - k) n-k 1. 

A similar identity follows from the fact that Ea(x + bk), are a Steffensen 
sequence. These identities also give the connection constants for expressing 
G,(x, b) as a linear combination of G,(x, c). In short, the previous form reads 

4(x + a + c, b) = C Ak(x + a, b)A-k(x + 6 4, 
k>O 

and the Steffensen form is 

n ) = c A,-& + a, b) (” + ;+ “) . 
k>O 

The inverse set of the G,(x, b), call it JJx, b), is easily computed by Theo- 
rem 7. 

Consider the umbra1 operator IV sending xn to (x), , and, thus, 
WDW-l = d. The inverse operator sends E-bA to D(l + D)-b, a delta 
operator whose basic polynomials are 

p,(x) = x(1 + D)nb x%-l = xe-xD”bexxn-l 

= go m (n - l)k x”-k, 
which are polynomials of Laguerre type. 

Gould’s summation formula 5.5 and Bateman’s alternating convolution 
can also be obtained from the expansion theorem. We have thus “explained” 
most identities for the polynomials A,(x, b) given in Gould’s two papers. 

13. EXAMPLES AND APPLICATIONS 

Appell Polynomials. 

As already remarked, these are Sheffer polynomials relative to D. It is 
impossible to summarize here the immense literature on these sets; a few 
pertinent remarks must suffice. 

Ifp,(x) = T- lx”, then an easy computation gives 

~44 = (( T-9 T + 4 P,&), 
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a useful recurrence formula which yields various classical formulas (for 
example, the recurrence for Hermite polynomials). 

Expansion of the product p,(ax)g&) of Appell sets in terms of a third 
set were considered by Carlitz (1963); his results are special cases of those of 
Section 5. 

By far the most widely studied class of Appell polynomials are the Bernoulli 
polynomials (see N8rlund). They correspond to the operator /‘“, where 

(Since D J = d, p is also defined by J” = (A/D)” = [(e” - 1)/D]@.) For 
a = 1, we have J-lx” = B,(x), the familiar Bernoulli polynomials, whose 
elementary property can be gleaned from Section 5. The second expansion 
theorem yields the Euler-MacLaurin sum formula; generalizations (Nor- 
lund) are obtained by taking the B:](X) = J+xn. From (3) of Theorem 4 we 
easily infer that the sequence xBc-@$( x IS ) ’ b asic for the operator DJ”. This 
fact, combined with the general results given previously, yields all of 
Norlund’s identities. The umbra1 properties of these polynomials are 
remarkable, but require an extensive separate treatment. 

Appell sets with the Bernoulli-like property, 

A(- * - 1) = (- l>“P&>, 

were studied by Nielsen; Ward considered the more general functional 
equation, 

I&(~ + 8 = GAz(X>? (*I 

and called such Appell sequences regular. If a is not a root of unity, the only 
regular sequence is 

Kl(4 = 4x + bl(a - 1>1”; c, = an. 

When a is a root of unity, however, we find a wealth of possibilities, as 
follows: let a be a primitive rth root of unity, then every Appell set satis- 
fying (*) can be uniquely represented in the form 

P,(x) = %qx) + hKl&> + ... + GL-t,(x), 

and conversely. 
Another extensively studied (by Norlund) class of Appell polynomials is 

E;‘(x) = [I + (A/2)]-” x”, 
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and again their “properties” become special cases of the previous result. 
Again (Steffensen) the sequence xEt?j(x + na/2) is basic for the operator D 
cash (D/2). These sequences are variously called “Euler polynomials,” an 
honor which is, however, bestowed upon a great many other polynomial 
sequences. For a = - 1 we obtain, apart from a constant factor, the Genocchi 
pok’ynomiuls G,(x), and G,(O) are the Genocchi numbers. The second expansion 
theorem applied to the Euler polynomials yields the Book summation formula. 

Inverse Relations. 

Given two polynomial sequences p,(x) and qn(x), suppose we can determine 
the connection constants 

P,(X) = to GhkcIk(4l 
q&) = i 4&kPk(47 

k=O 

then we can derive a pair of inverse relations. Given any sequence a, , set 

J%&)) = 4; this defines a linear functional L on the space P. If 
6, = L(p,(x)), we have 

b,= 2 C,kak , 
k=O 

(*) 
a, = i dnkbk . 

k=O 

By specializing to suitable sets of Sheffer polynomials, a great many of the 
inverse relations in the literature can be explained. In this context, Theorem 7 
will help find the inverse of certain infinite matrices. 

The simple inverse relations in Riordan (pp. 43-49) fall under the present 
scheme. Glancing at Table 2.1 (Riordan, p. 49), we recognize that 1. and 2. 
reduce to Theorem 2 for d and the backward difference V, and the rest result 
from an umbra1 interpretation of the foregoing identities for Laguerre 
polynomials. For example, 6 follows from the fact that the basic Laguerre 
polynomials are self-inverse. 

For the sake of clarity we discuss the simplest of all inverse relations, 
namely 

a, = c (- l)k (1) b,; b, = c (- 1)” (“k) ak - (*I 
k>O k>O 
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This is immediately understood by defining the linear functional L(x”) = b, , 

which by the first identity gives a, = L(( 1 - x)~). Hence, 

b, = L((1 - (1 - x))“), 

which is the second identity. 
Klee’s identity (Riordan, p, 13), 

z. (- lJk (3 (” 2 “) = (- 1)” (, ” .) 3 

is another simple example of the use of such umbra1 techniques. Variants 
of the two inversion formulas derived previously are discussed by Riordan 
(pp. 49-54) and summarized in his Table 2.2 (p. 52). These inverse relations 
can be treated by the methods developed here. 

Generating Functions. 

To relate a generating function identity in the literature to the present 
techniques, we compare with the generating function of basic and Sheffer 
polynomials, thereby identifying the operators involved. Take, say Example 2 
of Riordan (p. 100). Changing variables, 

where p,(x) is basic relative to backward difference; the inversion formula 

a, = k$o (’ ; “) L,; bn = Ii (- 1)” (P sf “) anmlc 
k=O 

is, therefore, the umbra1 version of the expansion formula for V. Again 
following Riordan (p. lOl), taking 

erlog(l--t--tv-' = c PnW tn 

?&a0 --a--' 

we find that pn( x are basic for Q = [(5 - 4E-r)1/2 - I]/2 and p,(l)/n! are ) 
the Fibonacci numbers, whence a host of identities, and so forth to include 
Riordan (pp. 99-106). 

4=‘9/42/3-16* 
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The case of exponential generating functions (Riordan, pp. 106-114) is 
simpler; most of the examples treated there reduce to Appell sets and their 
inverse. The same can be said of the theory of Lagrange series (Riordan, 
pp. 146-151). 

The solution of transcendental equations is sometimes effectively carried 
out by operator methods. Suppose we are to find a solution t of y = q(t). 
Letting Q = Q(D) (so that we require Q(O) = 0 and q’(O) # 0), we find from 

that the solution t (Theorem 3) is 

eat = p& 
n>O n! y”* 

The Heaviside Calculus 

Although the name should be Boole’s, the term is usually applied to the 
study of shift-invariant operators which are polynomials in D (the analog 
for d, although easily derived, does not seem to appear in any treatise on 
finite differences). There are two main applications. Any differential equation 
p(D)f(x) = g(x) with p(0) # 0 h as a unique polynomial solution for every 
polynomial g(x), as follows immediately from Corollary 1 to Theorem 3 (this 
fact has been the point of departure for generalizations to functions of expo- 
nential type), and the inverse operator can be written in closed form using 
the Laguerre operator K and its iterations, which are easily simplified by the 
Riemann-Liouville formula. 

The second (and less well known) is the theory of expansions of formal 
power seriesf(t) in powers of a given polynomialp(t) withp(0) = 0,$(O) # 0: 

How are the coefficients a, to be determined ? There is a unique inverse 
power series p-l(t) of the polynomial p(t). Suppose a delta operator Q can 
be found for which both R = p-‘(Q) and f(R) have a simple enough form. 
Then an = [f(R) pn(x)lZ,s , where p,(x) are the basic polynomials of Q, by 
Theorem 2. This technique works more often than it appears; we illustrate it 
with an example from the literature. 
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It was reputedly proved by Schur that in the expansion 

sin 7rx = t 5 (x( 1 - x))” 
?+l n! 

(*I 

the coefficients a, are positive, but no explicit expression was found. Carlitz 
(1966) found an explicit formula for the coefficients, but it is not clear from 
his result that the a, are positive. 

Now, it is obvious from (*) that the delta operator in question is 
Q=D(I-D), h w ose basic polynomials are p,(x), computed by 

p,(x) = x(I - D)-% cl, 
that is, 

(I - D)-” = (A)” = (I + D + D2 + D3 + ..e)” 

= I + nD + (” l ‘) D2 + a.-, 

p,(x) = g (” + i - ‘) (n - l)i xn-i 

thus (Theorem 3) 

Setting A, = [p,(k) - p,(- G)]/2in!, Carlitz’s explicit expression is 
obtained. The polynomials p,(x) and the coefficients a, can be expressed in 
the closed form 

P&> = (n _” l)! om e-Y+ + W1 & s 
7712 

“.‘&jj o s [y(r - y)]“-’ sin y dy 

easily derived from the integral form of (1 - D)-“. From this, the positivity 
of a, can be inferred. 

The well known Bessel polynomials m(x) of Krall and Frink are not a 
Sheffer set, but the related setf,(x) = a~r,-,(x-~) is one. Its delta operator is 
Q = D - D2/2. This makes some of the results in Carl& (1957) special cases 
of the present theory. For instance, the generating function, (Carl&z’s 2.5) 

c y) la - 5 l- - n. t _ e [ (1 2tw1 ) 

9820 

the property of being of binomial type (2.7); and Carlitz’s (2.8) are obtained 
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by computing the connection constants with xn. The formulas expressing the 
derivatives offn(X) as linear combinations of thef,(x) follow from the expan- 
sion theorems (2.10, 2.12) as do (3.1, 3.2). Burchnall’s B,(X) are the Sheffer 
set relative to Q’ = 1 - D; this gives (- 2)” 0,(x/2) = ~~2”-1)(~) by an 
easy umbra1 computation. Carlitz’s (4.4) gives the connection constants 
between Lt’(2x) andf,(x), which follow from Theorem 7, and (4.6) connects 
8,(x) withf,(x). 

Dayerence Polynomials 

They are the Sheffer sets associated with the difference operator A = E - I, 
having the basic polynomials (x)~ = X(X - 1) ... (X - n + 1). (The closely 
related backward difference operator, V = I - E-l, has the basic poly- 
nomials a+“) = x(x + 1) ... (X + n - 1). C uriously, the connection constants 
of x(n) with (x)~ are, apart from sign, the coefficients of the basic Laguerre 
polynomials (an easy computation using Theorem 7).) 

The generating function of a set of difference polynomials can be written 
in the suggestive form s(t)-l (1 + t>“. 

The first expansion theorem applied to A gives the Newton expansion. The 
expansion of the Bernoulli operator J in powers of A is Gregory’s formula. 

Newton’s expansion, combined with the identity, 

A” = c (3 (- 1),-I, E”, 
k>O 

gives a pair of inverse relations which could simplify many a calculation in the 
literature (e.g. Carlitz (1952)). Notable difference sets (cf. Boas and Buck) are: 

(a) Poisson-Charlier polynomials, with S = E (apart from a parameter); 

(b) Narumi polynomials, with S = Dk/(log(l + D))“; 

(c) Booze polynomials, with S = I + (I + D)“; 

(d) Peters polynomials, with 5’ = (I + (I + D)k)A; 

(e) Bernoulli polynomials of the second kind b,(x) = Jo , extensively 
studied by Jordan. 

(f) The StirZing polynomials Nn(x), introduced by Nielsen (p. 72), are 
the basic set inverse to the upper factorial powers @). They are, therefore, 
easily reduced to the exponential polynomials. Nielsen’s notation &(x) is 
related to the present notation by (x + 1) &(x) = N,(- x - 1)/n!. The 
central difference operator S = [El/2 - E-9/2 has an extensive literature 
(but see Riordan, pp. 212-217); t i is a special case of an Abel operator. Its 
basic polynomials are written XI”]; their connection constants (the central 
factorial coefficient) with xn were computed by Carlitz and Riordan, and 
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their results are derived from Theorem 7 and its corollaries. Expansions in 
powers of S, such as the formulas of Lubbock and Woolhouse, are heuristic- 
ally derived by Steffensen; they can, of course, be verified by Theorem 2, 
whose application becomes particularly useful when the sign of a square root 
is to be chosen. 

It does not seem to have been realized that Newton’s expansion and its 
variants obtained from Theorem 6 yield a powerful technique for proving 
binomial identities. We give a sampling, taken from Riordan (pp. I-18). 

The original Vandermonde formula (3a), 

follows from the expansion of (n + P)~ in terms of the basic polynomials 
(n)lc . Grosswald’s identity (Example 7), 

kEo (- 2)-” (, “+ k) (” + T + “) = (- 1)” 2-2” Q , n - m = 2p, 

becomes clear when one replaces m by m - n: 

kgo (- x” (, _ ; + k) (” ; “) = (- 1)” 2-2” (1) ) 

with 2n - m = 2~. Again replacing k by 2p - k on the left, this reduces to 

k$o (- 2f-28 (;I) (” $‘” ; “) = (- 1y2-2” (J) ) 

and this is clearly a Newton expansion relative to the basic polynomials 
(n)l,; the computation of the coefficient is routine. 

The expansion of a product of two binomial coefficients (IO), 

follows the same reasoning. Because of its importance, we derive it in full. 
Jordan’s formula, 

Ak(uw) = i (3 A&A”-jE%, 
j=O 
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gives, when u = (x), and v = (x), and g > p, 

kw(X)P (~)o)l3c=o = 6) pvk-p~qX),],=, 

xz2 
0 ; PWk-P wwL7++Ll 

= ii) PW-P (Ph+Z)--k = (i) (k g p) PkL 
as desired. 

Shanks’ result that 

with A& > 0, can be established in the same way, but the literature on the 
Atj is scarce. 

Abel polynomials 

They are the basic polynomials for the delta operator Q = EmD, given by 
(3) of Theorem 4 as 

A:‘(x) = x(x - ncu)? 

Expansions into Abel polynomials have an extensive theory (Hurwitz, Sal%, 
Boas, and Buck). The polynomials have notable statistical and combinatorial 
significance. Identities for the Abel polynomials, as well as for the related 
Sheffer polynomials (X - (n + 1) a)n, f o 11 ow the same pattern as those for the 
Gould polynomials. All identities in Riordan (pp. 18-23) can be obtained 
either by one of the expansion theorems or by umbra1 composition (some- 
times by both methods). Similarly, the Abel inverse relations of Riordan 
(pp. 92-99) can be obtained by either of the foregoing methods or by recogniz- 
ing a cross-sequence. As we have already described the techniques in deriving 
Gould’s inversion formulas, we shall not repeat them here. As a simple 
example of an inverse pair, we quote the following, due to Clarke: 

b, = & (I) knn-IC-lak , 

a, = c (- l)n+” (i) kn-Lb, , 
lC>O 

which the reader will readily identify. 
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Abel’s identity, 
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(3 + y)” = go (3 (y + fq-” x(x - Ku)k-l, 

is nothing but an instance of the first expansion theorem as is the superficially 
remarkable identity in Bernoulli and Abel polynomials 

B,(x + y) = f (J %,(y + ka) x(x - ku)“-l, 
k=O 

and many similar formulas stated by Norlund, Steffensen, and others. The 
inverse set to the Abel polynomials does not seem to have been considered, 
though they have a combinatorial significance, and we shall briefly derive 
its properties here. Let 

B?‘(x) = kzo (3 xk&6)n-” 

= z. $ [EkODkxn]zzo; 

from the summation formula we recognize that these are indeed the inverses 
of the Abel polynomials. Their umbra1 recursion formula is 

B’“‘(x) (B’“)(x) - nu)n-l = xn, 

and the identity stating that the two sets are inverse is 

xn = c (I) (ku)“-k x(x - ka)“-1. 
k>O 

The summation formula (Corollary 7 of Theorem 7) becomes 

This identity gives ample evidence of the simplicity of the umbra1 method. 
Various authors have considered basic polynomials relative to the operator 

Q = Ea(l + 0)” D. The connection constants with the Abel polynomials are 
easily found by Theorem 4: 

p,(x) = nf1 (- 1)” (n’ +K” - ‘) (n - l)k ‘$&-k(x). 
k=O 

For Q = EaeDaJZD we find a generalization of the Hermite polynomials 
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considered by Steffensen. The theory of crosssequences expresses them at 
once in terms of the Hermite polynomials HJx), that is, 

The connection constants with x” can be computed by the summation 
formula, in view of the fact that the inverse polynomials can be expressed in 
terms of the inverses of the Abel polynomials. This gives 

p?‘(x) = $l(” ; ‘) .“‘“Hk[a(n”“)] Xn-k. 

The inverse connection constants can also be computed by Theorem 7; for 
a = 0 we have 

two Hermite-reminding identities. 

Cotlar Polynomials 

An interesting class of Sheffer operators associated with the difference 
operator d has been studied by Cotlar. It is easy to see that a polynomial 
sequencep,(x) has the property that p,,(k) = p&z) for all nonnegative integers 
k and n, if and only if it can be written in the form 

for some sequence Xi # 0. Such sequences of polynomials are said to be 
permutable. There is one and only one permutable Sheffer set-except for a 
parameter; it must be a Sheffer set for the delta operator d and the invertible 
operator (I - ad)-+ it has the explicit expression 

awn + (;) a”-Y.kl + .*- + 1 = p,(x). 

Again, all Sheffer sets p,(x) such that the sequence g,(x) = &(x)/n! is per- 
mutable can be classified (Cotlar). The delta operator is log(1 + aD/(D - I)) 
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and the invertible operator is (1 - 0)-l. In particular for a = - 2 one 
obtains a sequence of Sheffer polynomials M,(X) enjoying the remarkable 
properties 

lkq- x - 1) = (- 1)” M,(x), 

~n(k> = Mk(4 4 71 3 0, 

(- 1)” MJ&- n) = (- 1)” M,-,(- k); k,n 3 1. 

It can be shown that the three foregoing properties uniquely determine the 
sequence M,(X), which is in fact explicitly given by 

The inverse set of the M,(X) can be expressed in terms of Bernoulli poly- 
nomials. 

Exponential polynomials 

Also of statistical origin are the exponential polynomials&,(x), introduced by 
Stefiensen and studied further by Touchard and others. Some of their 
properties were developed in III. We recall that they are the basic poly- 
nomials for the delta operator log(l + D), and that they are inverse to (x)% , 
so that 

and 

r$(+ - 1) *a. (4 - n + 1) = x”, 

= go S(n, 4 xk, 
where, following Riordan’s notation, the S(n, K) denote the Stirling numbers 
of the second kind (and s(n, K) those of the first). Also, the Rodrigues formula 
((4) of Theorem 4) says that 

b&9 = 4LlW + 64x))~ 

The generalized Dobinsky formula follows most easily by umbra1 methods. 
Let p,(x) = (x)~ . Then 

PVd’) k P,(~(x)) = xn = e-” C - x , 
k>O k! 
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and, hence, by linearity 

p(4(4) = e-” kzo p xkj 

for every polynomial p(x). Setting P(X) = x” we obtain finally 

54$4 = e-s kzo y . 

Similarly one establishes the recursion 

+n+l(X) = 4444 + 1)“. 

We shall add to the properties developed in III the generating function, 

c dn(X> p = ez(et-l), 

n>o ?l! 

and Rodrigues’ formula, implicitly established in III, that 

&(x) = e-z(xD)n ex, 

which shows the roots of these polynomials to be real. Also, recall that the 
connection constants with xn are the Stirling numbers of the second kind. 
The connection constants between x” and &(x) are the Stirling numbers of 
the first kind, since the +,Jx) are the inverse set of the (x)~ . 

As an example of computation of a “new” set of connection constants, we 
shall connect the Laguerre polynomials with the polynomials +J- x). It is 
easy to see that the &( - X) are basic for the delta operator log(1 - 0). Thus, 
we must find a formal power seriesf(t) such that f(log( 1 - t)) = t/(t - 1). 
Clearly f(t) = 1 - eet is the desired series. The connection constants are 
therefore given by the coefficients of the basic sequence for the back- 
ward difference operators V = I - E-l, namely the polynomials 
x(x + 1) **. (X + n - 1). In symbols, 

Riordan’s treatment of operators (pp. 200-205) furnishes a further batch 
of examples of the present theory. We shall now briefly develop some of the 
properties of the polynomials 
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which are the difference analogs of the exponential polynomials. The umbra1 
theory of these two sets of polynomials can be used to systematically develop 
identities for the Stirling numbers. 

If V is the umbra1 operator defined by V(X), = &(x), then by Proposition 1 
of Section 7 &( x is basic for Vd V-l. But VX” = (x)~ , since ) 

(4 = 1 s(n, 4 Xk, 
k>O 

and so VDV-l = A. Therefore, &&c) is basic for 

Q=VdV-l=V(eD--I)V-‘=&-I. 

But then, by Theorem 7, 

which give orthogonality relations for the Stirling numbers. The reader 
should convince himself that Stirling number identities can be inferred 
from identities relating the &(x) and the &(x). We give a sampling, leaving 
the umbra1 proofs as exercises. 

(2) YL+~(x> = 44(4 + 1)” gives 

w + 1, k) = i;. (p) S(i, k - 1). 

(3) MJI(4> = 64 gives 

c qn, k) s(K, i) = 6,i . 
k>O 

h(9%4> = Wn gives 

s(n, K) = 1 s(?z, K) s(k, i) S&j). 
k,i>O 

(4) 9444 = e-” kzo F . 
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Taylor’s expansion gives 

@%dx> = C x” [D*et$,(t)]t=o, I+0 k! 
which implies 

k” = i;o (f) i! S(n, i). 

Also by Taylor, 

= z. 2 Lo (e) (- l)k-i i”, 

which implies 

S(n, k) = &$& (3) (- l)k-i i”. 

(5) +n(~) of binomial type gives 

(i 1’) S(n, i + j) = k50 (3 S(k, i) S(n - k, j). 

(6) &(x) of binomial type gives 

(i Tj) s(n, i +j) = kTo (1) s(k,i) 4n - W 

14. PROBLEMS AND HISTORY 

We have assembled in random order some open questions suggested by the 
preceding theory. Other problems are mentioned in the text. 

(1) The present work unifies and extends the identities given by 
Riordan (pp. l-23, 43-54, 92-116, 128131, 141-152, 20@-205, 212-217), 
that is, 82 out of 146 pages of text or 56%. We have excluded the exercises 
for reasons of time. Notable exceptions are Riordan’s theory of Chebychev 
and Legendre inversions, the Bell polynomials, and differential operators of 
the type xD. Each of these topics calls for a development along a similar line 
but with a different invariance property than shift-invariance. 
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(2) Expansions of products of polynomials of one set in terms of those 
of another can be carried out by the foregoing methods but with difficulty. 
Indications from special identities (e.g. Hermite, Laguerre) are that there 
should be a general technique, which could apply more successfully to 
summing multiple binomial coefficients. 

(3) Let QX = 1 for the delta operator Q. Then Q can be embedded in a 
one-parameter group of operators Q tt) whose indicators satisfy the functional 
equation 

fp(Q’“‘(X)) = p+yx). 

The corresponding basic sets satisfy 

&)(cp’(x)) = fp(X). 
Develop the theory of such sets. How can the “infinitesimal generator” be 
computed? The simplest example of this is the basic Laguerre set. 

(4) It has been suggested by Gould that some of the identities in 
Vandermode convolution are analogous to Kapteyn series. Several other 
analogies with classical eigenfunction expansions can be noted, which suggest 
an extension of the theory to classes of special functions. Truesdell’s theory 
is helpful in this connection. Another possible extension is to exponential 
polynomials. 

(5) Statistical, probabilistic and combinatorial interpretations of the 
identities are worthwhile. Several special sets, e.g. Abel, are connected with 
particular distributions of statistics (see e.g. Dwass, Pyke). There are at least 
three possibilities; interpretation as compound Poisson processes; inter- 
pretation through stationary stochastic processes, as in the relation of Hermite 
polynomials to Brownian motion of the Poisson-Charlier polynomials by 
the Poisson process, and, finally, the combinatorial interpretation through 
counting binomial type structures such as reluctant functions (see III). Very 
little is known about combinatorial interpretation of Sheffer polynomials; 
occasionally (Laguerre) they arise in counting permutations with restricted 
position. A major step forward would be a combinatorial or probabilistic 
interpretations of Bernoulli numbers; we surmise that the fact that these are, 
apart from a factor, the cumulants of the uniform distribution is relevant. 

(6) One of the most difficult open problems is that of estimating the 
remainder after n terms in the expansion formulas. Little is known except in 
the Appell case. For $-adic convergence, the results are comparatively simple 
(see LeVeque, p. 55ff.), but undeveloped. 

(7) Which Sheffer sets are orthogonal relative to some weight function 
in some region of the complex plane ? Such a region is probably related to 
the convergence region of Boas and Buck. 
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(8) Another approach to the present theory is through the techniques of 
Hopf algebras. The algebra of polynomials in the variable x is a Hopf algebra, 
with diagonal map 

4: xn --+ i (3 xk @ x-l<. 
k=O 

The dual Hopf algebra is the algebra of differential operators with constant 
coefficients, the pairing between the two being given by 

An umbra1 operator can be defined as one that commutes with the diagonal 
map, for example. The greater elegance of this approach is evident, as are 
some of its advantages: one can consider differential operators acting or 
polynomials or polynomials p(x) as operators on operators. In addition, this 
point of view should point the way to a generalization to several variables, to 
the exterior algebra (in infinite dimensions) and to more general Hopf 
algebras. The theory of spherical harmonics should fit in one such generaliza- 
tion. 

(9) There is a curious relationship between the coefficients of the 
expansion of a probability distribution into Hermite polynomials, and the 
cumulants. If the mean is zero and the variance one, the two coincide up to 
n = 5; this led Jordan (1972) to mistakenly conclude (p. 150) that they all 
coincide, but see Kendall and Stuart (p. 158). At any rate, the relationship 
between the two sets of coefficients seems fairly simple and should be worked 
out, especially in view of the mystery underlying the cumulants. Note that 
one can define cumulants relative to any sequence of binomial type, e.g. the 
factorial cumulants (Kendall and Stuart). Do these lend themselves to easier 
interpretations ? 

(10) There is no special reason for choosing polynomials instead of 
trigonometric polynomials; various identities relating Fourier and Dirichlet 
expansions might become clearer, for example the relationship between 
Bernoulli numbers and the values of the zeta function. 

(11) Work out formulas for pi,(Q), when p,(x) is a Sheffer set relative 
to the delta operator Q. 

(12) There are several relationships between the factorization of dif- 
ferential operators with polynomial coefficients (of which no general theory 
exists) and Sheffer sets, see e.g. the last chapter of Riordan and various papers 
of Klamkin and Newman. One should begin by developing the theory of 
xD; for example, L,(xD) has a simple expression (why ?). See also Rainville 
(1941), Carlitz (1930), and Carlitz (1932). 
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(13) The Laguerre polynomials are formally related to the gamma 
distributions as the Hermite to the normal, the Poisson-Charlier to the 
Poisson; nevertheless, a specific construction of the corresponding stochastic 
process or a group of transformations relative to which they are the “spherical 
harmonics” seems to still be missing. 

(14) Various representations of the inner product making the Sheffer 
polynomials orthogonal are possible, and they should be investigated. The 
classical theory of orthogonal polynomials may have extensions to inner 
products “involving derivatives.” In what sense is the inner product of 
Section 9 “natural” ? The inner product for the Hermite polynomials with 
negative or imaginary variance is particularly interesting, in view of possible 
connection with the Feynman integral. 

(15) The explicit representation of umbra1 operators leads to operator- 
differential equations in the Pincherle derivative, and is an untouched subject 
of great interest. 

(16) The theory of factorial series (see e.g. Niirlund or Nielsen) 
indicates that expansions in series of the form J&,, U&~(X) are at least 
possible in some cases. Is it possible to extend the present theory in this 
direction ? 

(17) In the same vein, the divided difference operation, 

q(x)+f(4 -“f(Y), 
X-Y 

is easily checked to be coassociative. This suggests that the theory be best 
developed in the context of coalgebras (Sweedler) and that a suitable notion of 
shift-invariance may be at hand. The same may be said of Thiele’s inverse 
differences (Norlund). 

(18) An operational calculus, as understood in the last fifty years, is an 
isomorphism of a function algebra into an algebra of operators. In this respect, 
the isomorphism in the present calculus possesses one extra feature: it 
preserves functional composition, in fact, it gives meaning to it in terms of an 
operation on operators. Can this feature be carried over to other operational 
calculi ? 

(19) Work out representations of shift-invariant operators analogous 
to Post’s inversion formula for the Laplace transform. 

(20) Under what conditions are the zeros of a Sheffer set real ? 

(21) Evidently the kind of umbral composition we have considered is 
not as general as it should be, as it does not explain why Ha,(x) is a constant 
multiple of L~-1’2)(x2). 
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(22) The analogy between the functions ear and (a - x)-l suggests 
that there should be a theory of operators where shift-invariance is replaced 
by the functional equation 

(u - x)-l - (u - y)-1 = (x - y) (a - x)-l (a - y)-1. 

This suggests parametrized families T, of operators such that 

TJ, = CT, - T,)!@ - Y), 

Some work of Redheffer supports this feeling. 

(23) It is easy to see that a polynomial p(x) is positive for all integer 
values of x if and only if its expansion in a Newton series has nonnegative 
coefficients. We conjecture that analogous results exist for Laguerre and 
Hermite polynomials and relate to the position of the zeros of these poly- 
nomials. 

History 

It is impossible to account for the detailed development of the Heaviside 
calculus from its beginnings; we shall only mention the works that relate to 
the present approach. Perhaps the most striking feature of this subject is that 
each author in the past would develop one approach to the exclusion of 
others. Thus, Carlitz, Riordan, and Steffensen, while feeling at home with 
generating functions, are somewhat ill-at-ease when handling operators, 
called by Steffensen “symbols.” Pincherle, on the other hand, is fully aware of 
the abstract possibilities of the concept of operator, but ignorant of the nitty- 
gritty of numerical analysis, where he would have found a fertile ground for 
his ideas. Sheffer also uses power series in preference to operators, with a 
resulting lack of completeness. 

The characterizations of basic polynomials, Sheffer polynomials and cross- 
sequences in terms of a binomial property (Theorems 1 and 8, and Proposi- 
tion 6 of Section 5) are new. Other authors have used characterizations in 
terms of operators, thereby missing one of the main techniques. 
The two expansion theorems may also be said to be new, although 
various partial versions may be found in the literature from Pincherle on. 
The notions of a delta operator and basic sets are due to Steffensen (who, 
however, did not give them a name and did not realize that they were one and 
the same as sequences of binomial type) as is that of a cross-sequence (again 
unnamed and uncharacterized). The isomorphism theorem was at least 
intuited by Pincherle, and has been tacitly-and often unrigorously-used by 
several authors. 

The idea of applying the Pincherle derivative (the name is ours) in the 
present context is new; it greatly simplifies the proof of Theorem 4 (first 
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guessed by Steffensen) as well as the theory of Laguerre and Hermite poly- 
nomial, to name only a few instances. Theorem 5 is new (first stated in III). 
The recurrence formulas are due to Sheffer, as are the eigenfunction expansion 
formulas, with the exception of the explicit inner products; his proofs, 
however, use power series. Section 7 is new, as are most of the results in 
Section 8. In the examples, detailed references are given. 

An extended bibliography has been appended as a hunting ground for 
further applications and extensions of the present methods. Items cited in 
the bibliography of Mullin-Rota will not be repeated here. 
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