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Óscar Blasco, Spain
Martin Bohner, USA
Huseyin Bor, Turkey
Tomasz Brzezinski, UK
Teodor Bulboacă, Romania
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3 Département de Mathématiques, Université d’Evry-Val-d’Essonne, Boulevard F. Mitterrand,
91025 Evry Cedex, France

4 Department of Mathematics, Faculty of Sciences, Akdeniz University, 07053 Antalya, Turkey

Correspondence should be addressed to CheonSeoung Ryoo, ryoocs@hnu.kr

Received 21 November 2012; Accepted 21 November 2012

Copyright q 2012 CheonSeoung Ryoo et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Bernoulli numbers, Bernoulli polynomials, and Euler numbers, Euler polynomials were stud-
ied by many authors. Bernoulli numbers, Bernoulli polynomials, Euler numbers, and Euler
polynomials possess many interesting properties and arise in many areas of mathematics
and physics. These numbers are still in the center of the advanced mathematical research.
Especially, in number theory and quantum theory, they have many applications.

p-Adic analysis with q-analysis includes several domains in mathematics and physics,
including the number theory, algebraic geometry, algebraic topology, mathematical analysis,
mathematical physics, string theory, field theory, stochastic differential equations, quantum
groups, and other parts of the natural sciences.

The intent of this special issue was to survey major interesting results and current
trends in the theory of p-adic analysis associated with q-analogs of zeta functions, Hurwitz
zeta functions, Dirichlet series, L-series, special values, q-analogs of Bernoulli, Euler, and
Genocchi numbers and polynomials, q-integers, q-integral, q-identities, q-special functions, q-
continued fractions, gamma functions, sums of powers, q-analogs of multiple zeta functions,
Barnes multiple zeta functions, multiple L-series, and computational and numerical aspects
of q-series and q-analysis.

The Guest Editors and Referees of this special issue are well-known mathematicians
that work in this field of interest. Thus, we got the best articles to be included in this issue.
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The results and properties of accepted papers are very interesting, well written, and mathe-
matically correct. The work is a relevant contribution in the field of applied mathematics.

CheonSeoung Ryoo
Taekyun Kim

A. Bayad
Yilmaz Simsek
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The purpose of this paper is to give some arithmatic identities for the Bernoulli and Euler numbers.
These identities are derived from the several p-adic integral equations on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
algebraic closure of Qp, respectively. The p-adic norm is normalized so that |p|p = 1/p. Let N

be the set of natural numbers and Z+ = N ∪ {0}.
Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp),

the bosonic p-adic integral on Zp is defined by

I
(
f
)
=
∫

Zp

f(x)dμ(x) = lim
N→∞

pN−1∑

x=0

f(x)μ
(
x + pNZp

)
= lim

N→∞
1
pN

pN−1∑

x=0

f(x), (1.1)

and the fermionic p-adic integral on Zp is defined by Kim as follows (see [1–8]):

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x. (1.2)
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The Euler polynomials, En(x), are defined by the generating function as follows (see
[1–16]):

FE(t, x) =
2

et + 1
ext =

∞∑

n=0

En(x)
tn

n!
. (1.3)

In the special case, x = 0, En(0) = En is called the nth Euler number.
By (1.3) and the definition of Euler numbers, we easily see that

En(x) =
n∑

l=0

(
n
l

)
Elx

n−l = (E + x)n, (1.4)

with the usual convention about replacing El by El (see [10]). Thus, by (1.3) and (1.4), we
have

E0 = 1, (E + 1)n + En = 2δ0,n, (1.5)

where δk,n is the Kronecker symbol (see [9, 10, 17–19]).
From (1.2), we can also derive the following integral equation for the fermionic p-adic

integral on Zp as follows:

I−1
(
f1
)
= −I−1

(
f
)
+ 2f(0), (1.6)

see [1, 2]. By (1.3) and (1.6), we get

∫

Zp

e(x+y)tdμ−1
(
y
)
=

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
. (1.7)

Thus, by (1.7), we have

∫

Zp

(
x + y

)n
dμ−1

(
y
)
= En(x), (1.8)

see [1–8, 13–16].
The Bernoulli polynomials, Bn(x), are defined by the generating function as follows:

FB(t, x) =
t

et − 1e
xt =

∞∑

n=0

Bn(x)
tn

n!
, (1.9)

see [18]. In the special case, x = 0, Bn(0) = Bn is called the nth Bernoulli number. From (1.9)
and the definition of Bernoulli numbers, we note that

Bn(x) =
n∑

l=0

(
n
l

)
xn−lBl = (B + x)n, (1.10)
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see [1–19], with the usual convention about replacing Bl by Bl. By (1.9) and (1.10), we easily
see that

B0 = 1, (B + 1)n − Bn = δ1,n, (1.11)

see [13].
From (1.1), we can derive the following integral equation on Zp:

I
(
f1
)
= I

(
f
)
+ f ′(0), (1.12)

where f1(x) = f(x + 1) and f ′(0) = (df(x)/dx)|x=0.
By (1.12), we have

∫

Zp

e(x+y)tdμ
(
y
)
=

t

et − 1e
xt =

∞∑

n=0

Bn(x)
tn

n!
. (1.13)

Thus, by (1.13), we can derive the following Witt’s formula for the Bernoulli polynomials:

∫

Zp

(
x + y

)n
dμ

(
y
)
= Bn(x), for n ∈ Z+. (1.14)

In [19], it is known that for k,m ∈ Z+,

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
Bk+m+1−j(x)
k +m + 1 − j = xk(x − 1)m +

(−1)m+1

(k +m + 1)
(
k+m
k

) , (1.15)

where
(

k
j

)
= 0 if j < 0 or j > k.

The purpose of this paper is to give some arithmetic identities involving Bernoulli and
Euler numbers. To derive our identities, we use the properties of p-adic integral equations on
Zp.

2. Arithmetic Identities for Bernoulli and Euler Numbers

Let us take the bosonic p-adic integral on Zp in (1.15) as follows:

I1 =
∫

Zp

xk(x − 1)mdμ(x) + (−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(
m
l

)
(−1)l

∫

Zp

xk+m−ldμ(x) +
(−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(
m
l

)
(−1)lBk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.1)
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On the other hand, we get

I1 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j
∫

Zp

Bk+m+1−j(x)dμ(x)

=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lBl.

(2.2)

By (2.1) and (2.2), we get

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl

=
m∑

l=0

(−1)l
(
m
l

)
Bk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.3)

Therefore, by (2.3), we obtain the following theorem.

Theorem 2.1. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl − (−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(−1)l
(
m
l

)
Bk+m−l.

(2.4)

Now we consider the fermionic p-adic integral on Zp in (1.15) as follows:

I2 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)

× Bk+m+1−j−l

∫

Zp

xldμ−1(x)
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=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)

× Bk+m+1−j−lEl.

(2.5)

On the other hand, we get

I2 =
m∑

l=0

(−1)l
(
m
l

)∫

Zp

xm−l+kdμ−1(x) +
(−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(−1)l
(
m
l

)
Ek+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.6)

By (2.5) and (2.6), we get

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)](
k +m + 1 − j

l

)

× Bk+m+1−j−lEl

=
m∑

l=0

(−1)l
(
m
l

)
Ek+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.7)

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.2. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)](
k +m + 1 − j

l

)

× Bk+m+1−j−lEl − (−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(−1)l
(
m
l

)
Ek+m−l.

(2.8)

Replacing x by (1 − x) in (1.15), we have the identity:

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
Bk+m+1−j(1 − x)
k +m + 1 − j

= (−1)k+mxm(1 − x)k + (−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.9)
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Let us take the bosonic p-adic integral on Zp in (2.9) as follows:

I3 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−l

∫

Zp

(1 − x)ldμ(x)

=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lBl

+
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−ll

+
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lδ1,l

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl

+
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
(
2Bk+m−j + δ1,(k+m−j)

)

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl + 2

max(k,m)∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]

× Bk+m−j +
(

k
k +m − 1

)
+ (−1)k+m

(
m

k +m − 1
)
.

(2.10)
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On the other hand, we see that

I3 = (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Bk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) . (2.11)

By (2.10) and (2.11), we get

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl + 2

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]

× Bk+m−j +
(

k
k +m − 1

)
+ (−1)k+m

(
m

k +m − 1
)

= (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Bk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.12)

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.3. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl + 2

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]

× Bk+m−j +
(

k
k +m − 1

)
+ (−1)k+m

(
m

k +m − 1
)
− (−1)m+1

(k +m + 1)
(
k+m
k

)

= (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Bk+m−l.

(2.13)

We consider the fermionic p-adic integral on Zp in (2.9) as follows:

I4 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−l

∫

Zp

(1 − x)ldμ−1(x)
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=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lEl

+ 2
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−l

− 2
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lδ0,l

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lEl

+ 2
max{k,m}∑

j=1

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]
δ1,(k+m+1−j)

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lEl + 2

[(
k

k +m

)
+ (−1)k+m+1

(
m

k +m

)]
.

(2.14)

On the other hand, we get

I4 = (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Ek+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) . (2.15)

By (2.14) and (2.15), we obtain the following theorem.
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Theorem 2.4. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)](
k +m + 1 − j

l

)

× Bk+m+1−j−lEl + 2
[(

k
k +m

)
+ (−1)k+m+1

(
m

k +m

)]

− (−1)m+1

(k +m + 1)
(
k+m
k

) = (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Ek+m−l.

(2.16)
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We generalize the Euler numbers and polynomials by the generalized (q,w)-Euler numbers
En,q,w(a) and polynomials En,q,w(x : a). We observe an interesting phenomenon of “scattering”
of the zeros of the generalized (q,w)-Euler polynomials En,q,w(x : a) in complex plane.

1. Introduction

Recently, many mathematicians have studied in the area of the Euler numbers and
polynomials (see [1–15]). The Euler numbers and polynomials possess many interesting
properties and arising in many areas of mathematics and physics. In [14], we introduced
that Euler equation En(x) = 0 has symmetrical roots for x = 1/2 (see [14]). It is the aim of this
paper to observe an interesting phenomenon of “scattering” of the zeros of the generalized
(q,w)-Euler polynomials En,q,w(x : a) in complex plane. Throughout this paper, we use the
following notations. By Zp, we denote the ring of p-adic rational integers, Qp denotes the
field of p-adic rational numbers, Cp denotes the completion of algebraic closure of Qp, N

denotes the set of natural numbers, Z denotes the ring of rational integers, Q denotes the
field of rational numbers, C denotes the set of complex numbers, and Z+ = N ∪ {0}. Let νp
be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of q-
extension, q is considered in many ways such as an indeterminate, a complex number q ∈ C,
or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally
assume that |q − 1|p < p−1/(p−1) so that qx = exp(x log q) for |x|p ≤ 1

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

. (1.1)
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Compared with [1, 4, 5]. Hence, limq→ 1[x] = x for any x with |x|p ≤ 1 in the present p-adic
case. Let d be a fixed integer, and let p be a fixed prime number. For any positive integer N,
we set

X = lim
←
N

(
Z

dpNZ

)
,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N,

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

(1.3)

is known to be a distribution on X, compared with [1–10, 14]. For

g ∈ UD
(
Zp

)
=
{
g | g : Zp → Cp is uniformlydifferentiable function

}
. (1.4)

Kim defined the fermionic p-adic q-integral on Zp

I−q
(
g
)
=
∫

Zp

g(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

∑

0≤x<pN
g(x)

(−q)x. (1.5)

From (1.5), we also obtain

qI−q
(
g1
)
+ I−q

(
g
)
= [2]qg(0), (1.6)

where g1(x) = g(x + 1) (see [1–3]).
From (1.6), we obtain

qnI−q
(
gn

)
+ (−1)n−1I−q

(
g
)
= [2]q

n−1∑

l=0

(−1)n−1−lqlg(l), (1.7)

where gn(x) = g(x + n).
As well-known definition, the Euler polynomials are defined by

F(t) =
2

et + 1
= eEt =

∞∑

n=0

En
tn

n!
,

F(t, x) =
2

et + 1
ext = eE(x)t =

∞∑

n=0

En(x)
tn

n!
,

(1.8)



International Journal of Mathematics and Mathematical Sciences 3

with the usual convention of replacing En(x) by En(x). In the special case, x = 0, En(0) = En

are called the n-th Euler numbers (cf. [1–15]).
Our aim in this paper is to define the generalized (q,w)-Euler numbers En,q,w(a) and

polynomials En,q,w(x : a). We investigate some properties which are related to the generalized
(q,w)-Euler numbers En,q,w(a) and polynomials En,q,w(x : a). Especially, distribution of roots
for En,q,w(x : a) = 0 is different from En(x) = 0

′
s. We also derive the existence of a specific

interpolation function which interpolate the generalized (q,w)-Euler numbers En,q,w(a) and
polynomials En,q,w(x : a).

2. The Generalized (q,w)-Euler Numbers and Polynomials

Our primary goal of this section is to define the generalized (q,w)-Euler numbers En,q,w(a)
and polynomials En,q,w(x : a). We also find generating functions of the generalized (q,w)-
Euler numbers En,q,w(a) and polynomials En,q,w(x : a). Let a be strictly positive real number.

The generalized (q,w)-Euler numbers and polynomials En,q,w(a), En,q,w(x : a) are
defined by

∞∑

n=0

En,q,w(a)
tn

n!
=
∫

Zp

waxeaxtdμ−q(x), (2.1)

∞∑

n=0

En,q,w(x : a)
tn

n!
=
∫

Zp

waye(ay+x)tdμ−q
(
y
)
, for t, w ∈ C, (2.2)

respectively.
From above definition, we obtain

En,q,w(a) =
∫

Zp

wax(ax)ndμ−q(x),

En,q,w(x : a) =
∫

Zp

way(x + ay
)n
dμ−q

(
y
)
.

(2.3)

Let g(x) = waxeaxt. By (1.6) and using p-adic q-integral on Zp, we have

qI−q
(
g1
)
+ I−q

(
g
)
=
∫

Zp

wa(x+1)ea(x+1)tdμ−q(x) +
∫

Zp

waxeaxtdμ−q(x)

=
(
qwaeat + 1

)
∫

Zp

waxeaxtdμ−q(x)

= [2]q.

(2.4)

Hence, by (2.1), we obtain

∞∑

n=0

En,q,w(a)
tn

n!
=

[2]q
qwaeat + 1

. (2.5)
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By (1.6), (2.2) and g(y) = waye(ay+x)t, we have

∞∑

n=0

En,q,w(x : a)
tn

n!
=

[2]q
qwaeat + 1

ext. (2.6)

After some elementary calculations, we obtain

∞∑

n=0

En,q,w(x : a)
tn

n!
= [2]q

∞∑

n=0
(−1)nqnwaneantext. (2.7)

From (2.6), we have

En,q,w(x : a) =
n∑

k=0

(
n
k

)
xn−kEk,q,w(a)

=
(
x + Eq,w(a)

)n
,

(2.8)

with the usual convention of replacing (Eq,w(a))
n by En,q,w(a).

3. Basic Properties for the Generalized (q,w)-Euler
Numbers and Polynomials

By (2.5), we have

∂

∂x

∞∑

n=0

En,q,w(x : a)
tn

n!
=

∂

∂x

(
[2]q

qwaeat + 1
ext

)

= t
∞∑

n=0

En,q,w(x : a)
tn

n!

=
∞∑

n=0

nEn−1,q,w(x : a)
tn

n!
.

(3.1)

By (3.1), we have the following differential relation.

Theorem 3.1. For positive integers n, one has

∂

∂x
En,q,w(x : a) = nEn−1,q,w(x : a). (3.2)

By Theorem 3.1, we easily obtain the following corollary.

Corollary 3.2 (integral formula). Consider that

∫q

p

En−1,q,w(x : a)dx =
1
n

(
En,q,w

(
q : a

) − En,q,w

(
p : a

))
. (3.3)
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By (2.5), one obtains

∞∑

n=0

En,q,w

(
x + y : a

) tn

n!
=

[2]q
qwaeat + 1

e(x+y)t

=
∞∑

n=0

En,q,w(x : a)
tn

n!

∞∑

k=0

yk t
k

k!

=
∞∑

n=0

(
n∑

k=0

(
n
k

)
Ek,q,w(x : a)yn−k

)
tn

n!
.

(3.4)

By comparing coefficients of tn/n! in the above equation, we arrive at the following
addition theorem.

Theorem 3.3 (addition theorem). For n ∈ Z+,

En,q,w

(
x + y : a

)
=

n∑

k=0

(
n
k

)
Ek,q,w(x : a)yn−k. (3.5)

By (2.5), form ≡ 1(mod 2), one has

∞∑

n=0

(

mn
[2]q
[2]qm

m−1∑

k=0

(−1)kqkwakEn,qm,wm

(
x + ak

m
: a

))
tn

n!

=
m−1∑

k=0

(−1)kqkwak

( ∞∑

n=0

En,qm,wm

(
x + ak

m
: a

))
(mt)n

n!

=
m−1∑

k=0

(

(−1)kqkwak
[2]q

qmwmaemat + 1
e(x+ak)t

)

=
[2]q

1 + qwaeat
ext

=
∞∑

n=0

En,q,w(x : a)
tn

n!
.

(3.6)

By comparing coefficients of tn/n! in the above equation, we arrive at the following
multiplication theorem.

Theorem 3.4 (multiplication theorem). For m,n ∈ N

En,q,w(x : a) = mn
[2]q
[2]qm

m−1∑

k=0

(−1)kqkwakEn,qm,wm

(
x + ak

m
: a

)
. (3.7)
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From (1.6), one notes that

[2]q =
∫

Zp

qwax+ae(ax+a)tdμ−q(x) +
∫

Zp

waxeaxtdμ−q(x)

=
∞∑

n=0

(

qwa

∫

Zp

wax(ax + a)ndμ−q(x) +
∫

Zp

wax(ax)ndμ−q(x)

)
tn

n!

=
∞∑

n=0

(
qwaEn,q,w(a : a) + En,q,w(a)

) tn

n!
.

(3.8)

From the above, we obtain the following theorem.

Theorem 3.5. For n ∈ Z+, we have

qwaEn,q,w(a : a) + En,q,w(a) =

{
[2]q, if n = 0,
0, if n > 0.

(3.9)

By (2.8) in the above, we arrive at the following corollary.

Corollary 3.6. For n ∈ Z+, one has

qwa(a + Eq,w(a)
)n + En,q,w(a) =

{
[2]q, if n = 0,
0, if n > 0,

(3.10)

with the usual convention of replacing (Eq,w(a))
n by En,q,w(a).

From (1.7), one notes that

∞∑

m=0

(

[2]q
n−1∑

l=0

(−1)n−1−lqlwal(al)m
)

tn

m!

= qn
∫

Zp

wax+ane(ax+an)tdμ−q(x) + (−1)n−1
∫

Zp

waxeaxtdμ−q(x)

=
∞∑

m=0

(

qnwan

∫

Zp

wax(ax + an)mdμ−q(x) + (−1)n−1
∫

Zp

wax(ax)mdμ−q(x)

)
tm

m!

=
∞∑

m=0

(
qnwanEm,w(an : a) + (−1)n−1Em,w(a)

) tm

m!
.

(3.11)

By comparing coefficients of tn/n! in the above equation, we arrive at the following theorem.
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Theorem 3.7. For n ∈ Z+, one has

qnwanEm,w(na : a) + (−1)n−1Em,w(a) = [2]q
n−1∑

l=0

(−1)n−1−lwalql(al)m. (3.12)

4. The Analogue of the q-Euler Zeta Function

By using the generalized (q,w)-Euler numbers and polynomials, the generalized (q,w)-Euler
zeta function and the generalized Hurwitz (q,w)-Euler zeta functions are defined. These
functions interpolate the generalized (q,w)-Euler numbers and (q,w)-Euler polynomials,
respectively. Let

Fq,w(x : a)(t) = [2]q
∞∑

n=0
(−1)nqnwaneantext =

∞∑

n=0

En,q,w(x : a)
tn

n!
. (4.1)

By applying derivative operator, dk/dtk|t=0 to the above equation, we have

dk

dtk
Fq,w(x : a)(t)

∣∣∣∣∣
t=0

= [2]q
∞∑

n=0
(−1)nqnwan(an + x)k, (k ∈ N), (4.2)

Ek,q,w(x : a) = [2]q
∞∑

n=0
(−1)nqnwan(an + x)k. (4.3)

By using the above equation, we are now ready to define the generalized (q,w)-Euler
zeta functions.

Definition 4.1. For s ∈ C, one defines

ζ
(a)
q,w(x : s) = 2

∞∑

n=1

(−1)nqnwan

(an + x)s
. (4.4)

Note that ζ(a)w (x, s) is a meromorphic function on C. Note that, if w → 1, w → 1, and
a = 1, then ζ

(a)
q,w(x : s) = ζ(x : s) which is the Hurwitz Euler zeta functions. Relation between

ζ
(a)
w (x : s) and Ek,w(x : a) is given by the following theorem.

Theorem 4.2. For k ∈ N, one has

ζ
(a)
q,w(x : −k) = Ek,w(x : a). (4.5)

By using (4.2), one notes that

dk

dtk
Fq,w(0 : a)(t)

∣∣∣∣∣
t=0

= [2]q
∞∑

n=0
(−1)nqnwan(an)k, (k ∈ N). (4.6)
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Hence, one obtains

Ek,q,w(a) = [2]q
∞∑

n=0
(−1)nqnwan(an)k. (4.7)

By using the above equation, one is now ready to define the generalized Hurwitz
(q,w)-Euler zeta functions.

Definition 4.3. Let s ∈ C. One defines

ζ
(a)
q,w(s) = 2

∞∑

n=1

(−1)nqnwan

(an)s
. (4.8)

Note that ζ(a)q,w(s) is a meromorphic function on C. Obverse that, if w → 1, q → 1, and a = 1,

then ζ
(a)
w (s) = ζ(s) which is the Euler zeta functions. Relation between ζ

(a)
w (s) and Ek,w(s) is

given by the following theorem.

Theorem 4.4. For k ∈ N, one has

ζ
(a)
q,w(−k) = Ek,q,w(a). (4.9)

5. Zeros of the Generalized (q,w)-Euler Polynomials En,q,w(x : a)

In this section, we investigate the reflection symmetry of the zeros of the generalized (q,w)-
Euler polynomials En,q,w(x : a).

In the special case, w = 1 and q → 1, En,q,w(x : a) are called generalized Euler
polynomials En(x : a). Since

∞∑

n=0

En(a − x : a)
(−t)n
n!

=
2

e−at + 1
e(a−x)(−t)

=
2

eat + 1
ext =

∞∑

n=0

En(x : a)
tn

n!
,

(5.1)

we have

En(x : a) = (−1)nEn(a − x : a) forn ∈ N. (5.2)

We observe that En(x : a), x ∈ C has Re(x) = a/2 reflection symmetry in addition to the usual
Im(x) = 0 reflection symmetry analytic complex functions.
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Let

Fq,w(x : t) =
[2]q

qwaeat + 1
ext =

∞∑

n=0

En,q,w(x : a)
tn

n!
. (5.3)

Then, we have

Fq−1,w−1(a − x : −t) =
[2]q−1

q−1w−ae−at + 1
e(a−x)(−t)

= wa
[2]q

qwaeat + 1
ext

= wa
∞∑

n=0

En,q,w(x : a)
tn

n!
.

(5.4)

Hence, we arrive at the following complement theorem.

Theorem 5.1 (complement theorem). For n ∈ N,

En,q−1,w−1(a − x : a) = (−1)nwaEn,q,w(x : a). (5.5)

Throughout the numerical experiments, we can finally conclude that En,q,w(x : a), x ∈
C has not Re(x) = a/2 reflection symmetry analytic complex functions. However, we observe
that En,q,w(x : a), x ∈ C has Im(x) = 0 reflection symmetry (see Figures 1, 2, and 3). The
obvious corollary is that the zeros of En,q,w(x : a) will also inherit these symmetries.

If En,q,w(x0 : a) = 0, then En,q,w

(
x∗0 : a

)
= 0, (5.6)

where ∗ denotes complex conjugation (see Figures 1, 2, and 3).
We investigate the beautiful zeros of the generalized (q,w)-Euler polynomials

En,q,w(x : a) by using a computer. We plot the zeros of the generalized Euler polynomials
En,q,w(x : a) for n = 30, a = 1, 2, 3, 4, and x ∈ C (Figure 1). In Figure 1 (top-left), we choose
n = 30, q = 1/2, w = 1, and a = 1. In Figure 1 (top-right), we choose n = 30, q = 1/2, w = 2,
and a = 2. In Figure 1 (bottom-left), we choose n = 30, q = 1/2, w = 3, and a = 3. In Figure 1
(bottom-right), we choose n = 30, q = 1/2, w = 4, and a = 4.

We plot the zeros of the generalized Euler polynomials En,q,w(x : a) for n = 30, a =
2, w = 2, and x ∈ C (Figure 2).

In Figure 2 (top-left), we choose n = 30, q = 1/10, w = 2, and a = 2. In Figure 2 (top-
right), we choose n = 30, q = 3/10, w = 2, and a = 2. In Figure 2 (bottom-left), we choose n =
30, q = 7/10, w = 2, and a = 2. In Figure 2 (bottom-right), we choose n = 30, q = 9/10, w = 2
and a = 2.

Plots of real zeros of En,q,w(x : a) for 1 ≤ n ≤ 25 structure are presented (Figure 3).
In Figure 3 (top-left), we choose q = 1/2, w = 1, and a = 2. In Figure 3 (top-right), we

choose q = 1/2, w = 2, and a = 2. In Figure 3 (bottom-left), we choose q = 1/2, w = 3, and
a = 2. In Figure 3 (bottom-right), we choose q = 1/2, w = 4, and a = 2.
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Figure 1: Zeros of En,q,w(x : a) for a = 1, 2, 3, 4.

Stacks of zeros of En,q,w(x : a) for 1 ≤ n ≤ 30, q = 1/2, w = 4, anda = 4 from a 3-D
structure are presented (Figure 4).

Our numerical results for approximate solutions of real zeros of the generalized
En,q,w(x : a) are displayed (Tables 1 and 2).

We observe a remarkably regular structure of the complex roots of the generalized
(q,w)-Euler polynomials En,q,w(x : a). We hope to verify a remarkably regular structure of
the complex roots of the generalized (q,w)-Euler polynomials En,q,w(x : a) (Table 1).

Next, we calculated an approximate solution satisfying En,q,w(x : a), q = 1/2, w =
2, a = 2, x ∈ R. The results are given in Table 2.

Figure 5 shows the generalized (q,w)-Euler polynomials En,q,w(x : a) for real −9/10 ≤
q ≤ 9/10 and −5 ≤ x ≤ 5, with the zero contour indicated in black (Figure 5). In Figure 5 (top-
left), we choose n = 1, w = 2, and a = 2. In Figure 5 (top-right), we choose n = 2, w = 2, and
a = 2. In Figure 5 (bottom-left), we choose n = 3,w = 2, and a = 2. In Figure 5 (bottom-right),
we choose n = 4, w = 2, and a = 2.

Finally, we will consider the more general problems. How many roots does En,q,w(x :
a) have? This is an open problem. Prove or disprove: En,q,w(x : a) = 0 has n distinct solutions.
Find the numbers of complex zeros CEn,q,w(x:a) of En,q,w(x : a), Im(x : a)/= 0. Since n is
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Figure 2: Zeros of En,q,w(x : a) for q = 1/10, 3/10, 7/10, 9/10.

Table 1: Numbers of real and complex zeros of En,q,w(x : a).

n
q = 1/2, w = 2, a = 2 q = 1/2, w = 4, a = 4

Real zeros Complex zeros Real zeros Complex zeros
1 1 0 1 0
2 2 0 2 0
3 3 0 1 2
4 2 2 2 2
5 3 2 1 4
6 4 2 2 4
7 3 4 3 4
8 4 4 2 6
9 3 6 3 6
10 4 6 2 8
11 5 6 3 8
12 6 6 4 8
13 5 8 3 10
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Figure 3: Real zeros of En,q,w(x : a) for 1 ≤ n ≤ 25.
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Table 2: Approximate solutions of En,q,w(x : a) = 0, x ∈ R.

n x

1 1.3333
2 0.3905, 2.2761
3 −0.4011, 1.560, 2.841
4 −1.0546, 0.6907
5 −1.5732,−0.17085, 1.829
6 −1.9151,−1.0557, 0.9680, 2.94
7 0.10585, 2.106, 3.68
8 −0.7557, 1.2442, 3.26, 4.00
9 −1.6091, 0.3825, 2.382
10 −2.392,−0.4793, 1.521, 3.52
11 −3.013,−1.3411, 0.6590, 2.66, 4.4
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Figure 5: Zero contour of En,q,w(x : a).
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the degree of the polynomial En,q,w(x : a), the number of real zeros REn,q,w(x:a) lying on the real
plane Im(x : a) = 0 is then REn,q,w(x:a) = n − CEn,q,w(x:a), where CEn,q,w(x:a) denotes complex zeros.
See Table 1 for tabulated values of REn,q,w(x:a) and CEn,q,w(x:a). We plot the zeros of En,q,w(x :
a), respectively (Figures 1–5). These figures give mathematicians an unbounded capacity to
create visual mathematical investigations of the behavior of the roots of the En,q,w(x : a).
Moreover, it is possible to create a new mathematical ideas and analyze them in ways that
generally are not possible by hand. The authors have no doubt that investigation along this
line will lead to a new approach employing numerical method in the field of research of
(q,w)-Euler polynomials En,q,w(x : a) to appear in mathematics and physics.
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The present paper deals with the various q-Genocchi numbers and polynomials. We define a new
type ofmultiple generalized q-Genocchi numbers and polynomials withweight α andweakweight
β by applying the method of p-adic q-integral. We will find a link between their numbers and
polynomials with weight α and weak weight β. Also we will obtain the interesting properties
of their numbers and polynomials with weight α and weak weight β. Moreover, we construct a
Hurwitz-type zeta function which interpolates multiple generalized q-Genocchi polynomials with
weight α and weak weight β and find some combinatorial relations.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp,Qp,C, and Cp denote the ring
of p-adic rational integers, the field of p-adic rational numbers, the complex number field,
and the completion of the algebraic closure of Qp, respectively. Let N be the set of natural
numbers and Z+ = N ∪ {0}. Let vp be the normalized exponential valuation of Cp with |p|p =
p−vp(p) = 1/p (see [1–21]). When one talks of q-extension, q is variously considered as an
indeterminate, a complex q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, then one normally
assumes |q| < 1. If q ∈ Cp, then we assume that |q − 1|p < 1.

Throughout this paper, we use the following notation:

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

. (1.1)

Hence limq→ 1[x]q = x for all x ∈ Zp (see [1–14, 16, 18, 20, 21]).
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We say that g : Zp → Cp is uniformly differentiable function at a point a ∈ Zp and we
write g ∈ UD(Zp) if the difference quotients Φg : Zp × Zp → Cp such that

Φg

(
x, y
)
=

g(x) − g(y)

x − y (1.2)

have a limit g ′(a) as (x, y) → (a, a).
Let d be a fixed integer, and let p be a fixed prime number. For any positive integerN,

we set

X = Xd = lim←
N

(
Z

dpNZ

)
, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.3)

where a ∈ Z lies in 0 ≤ a < dpN .
For any positive integer N,

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

(1.4)

is known to be a distribution on X.
For g ∈ UD(Zp), Kim defined the q-deformed fermionic p-adic integral on Zp:

I−q
(
g
)
=
∫

Zp

g(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

g(x)
(−q)x. (1.5)

(see [1–13]), and note that

∫

Zp

g(x)dμ−q(x) =
∫

X

g(x)dμ−q(x). (1.6)

We consider the case q ∈ (−1, 0) corresponding to q-deformed fermionic certain and
annihilation operators and the literature given there in [9, 13, 14].

In [9, 12, 14, 19], we introduced multiple generalized Genocchi number and
polynomials. Let χ be a primitive Dirichlet character of conductor f ∈ N. We assume that f
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is odd. Then the multiple generalized Genocchi numbers, G(r)
n,χ, and the multiple generalized

Genocchi polynomials, G(r)
n,χ(x), associated with χ, are defined by

F
(r)
χ (t) =

⎛

⎝2t
∑f−1

a=0 χ(a)(−1)aeat
eft + 1

⎞

⎠

r

=
∞∑

n=0

G
(r)
n,χ

tn

n!
,

F
(r)
χ (t, x) =

⎛

⎝2t
∑f−1

a=0 χ(a)(−1)aeat
eft + 1

etx

⎞

⎠

r

=
∞∑

n=0

G
(r)
n,χ(x)

tn

n!
.

(1.7)

In the special case x = 0, G(r)
n,χ = G

(r)
n,χ(0) are called the nth multiple generalized Genocchi

numbers attached to χ.
Now, having discussed the multiple generalized Genocchi numbers and polynomials,

we were ready to multiple-generalize them to their q-analogues. In generalizing the
generating functions of the Genocchi numbers and polynomials to their respective q-
analogues; it is more useful than defining the generating function for the Genocchi numbers
and polynomials (see [12]).

Our aim in this paper is to definemultiple generalized q-Genocchi numbersG(α,β,r)
n,χ,q and

polynomials G
(α,β,r)
n,χ,q (x) with weight α and weak weight β. We investigate some properties

which are related to multiple generalized q-Genocchi numbers G
(α,β,r)
n,χ,q and polynomials

G
(α,β,r)
n,χ,q (x) with weight α and weak weight β. We also derive the existence of a specific

interpolation function which interpolate multiple generalized q-Genocchi numbers G
(α,β,r)
n,χ,q

and polynomials G(α,β,r)
n,χ,q (x)with weight α and weak weight β at negative integers.

2. The Generating Functions of Multiple Generalized q-Genocchi
Numbers and Polynomials with Weight α and Weak Weight β

Many mathematicians constructed various kinds of generating functions of the q-Gnocchi
numbers and polynomials by using p-adic q-Vokenborn integral. First we introduce multiple
generalized q-Genocchi numbers and polynomials with weight α and weak weight β.

Let us define the generalized q-Genocchi numbers G
(α,β)
n,χ,q and polynomials G

(α,β)
n,χ,q(x)

with weight α and weak weight β, respectively,

F
(α,β)
χ,q (t) =

∞∑

n=0

G
(α,β)
n,χ,q

tn

n!
=
∫

X

tχ(x)e[x]qα tdμ−qβ(x),

F
(α,β)
χ,q (t, x) =

∞∑

n=0

G
(α,β)
n,χ,q(x)

tn

n!
=
∫

X

tχ
(
y
)
e[x+y]qα tdμ−qβ

(
y
)
.

(2.1)

By using the Taylor expansion of e[x]qα t, we have

∞∑

n=0

∫

X

χ(x)[x]nqαdμ−qβ(x)
tn

n!
=
∞∑

n=0

G
(α,β)
n,χ,q

tn−1

n!
= G

(α,β)
0,χ,q +

∞∑

n=0

G
(α,β)
n+1,χ,q

n + 1
tn

n!
. (2.2)
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By comparing the coefficient of both sides of tn/n! in (2.2), we get

G
(α,β)
n+1,χ,q

n + 1
=

[2]qβ
(
1 − qα)n

f−1∑

a=0
(−1)aqβaχ(a)

n∑

l=0

(
n
l

)
(−1)lqαal 1

1 + qf(αl+β)
. (2.3)

From (2.2) and (2.3), we can easily obtain that

∞∑

n=0

G
(α,β)
n,χ,q

tn

n!
=
∞∑

n=0

(
t

∫

X

χ(x)[x]nqαdμ−qβ(x)
)
tn

n!
= [2]qβ t

∞∑

l=0

(−1)lqβlχ(l)e[l]qα t. (2.4)

Therefore, we obtain

F
(α,β)
χ,q (t) = [2]qβ t

∞∑

l=0

(−1)lqβlχ(l)e[l]qα t =
∞∑

n=0

G
(α,β)
n,χ,q

tn

n!
. (2.5)

Similarly, we find the generating function of generalized q-Genocchi polynomials with
weight α and weak weight β:

G
(α,β)
0,χ,q(x) = 0,

G
(α,β)
n+1,χ,q(x)

n + 1
=
∫

X

χ
(
y
)[
x + y

]n
qαdμ−qβ

(
y
)
= [2]qβ

∞∑

l=0

(−1)lqβlχ(l)[x + l]nqα .

(2.6)

From (2.6), we have

F
(α,β)
χ,q (t, x) = [2]qβ t

∞∑

l=0

(−1)lqβlχ(l)e[x+l]qα t =
∞∑

n=0

G
(α,β)
n,χ,q(x)

tn

n!
. (2.7)

Observe that F(α,β)
χ,q (t) = F

(α,β)
χ,q (t, 0). Hence we have G(α,β)

n,χ,q = G
(α,β)
n,χ,q(0). If q → 1 into (2.7), then

we easily obtain Fχ(t, x).

First, we define the multiple generalized q-Genocchi numbers G
(α,β,r)
n,χ,q with weight α

and weak weight β:

F
(α,β,r)
χ,q (t) = [2]r

qβ
tr

∞∑

k1,...,kr=0

(−1)
∑r

i=1 kiqβ
∑r

i=1 ki

(
r∏

i=1

χ(ki)

)

e[
∑r

i=1 ki]qα t

= tr
∫

X

· · ·
∫

X︸ ︷︷ ︸
r-times

χ(x1) · · ·χ(xr)e[x1+···+xr]qα tdμ−qβ(x1) · · ·dμ−qβ(xr)

=
∞∑

n=0

G
(α,β,r)
n,χ,q

tn

n!
.

(2.8)
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Then we have

∞∑

n=0

∫

X

· · ·
∫

X︸ ︷︷ ︸
r-times

χ(x1) · · ·χ(xr)[x1 + · · · + xr]nqαdμ−qβ(x1) · · ·dμ−qβ(xr)
tn

n!

=
∞∑

n=0

G
(α,β,r)
n,χ,q

tn−r

n!
=

r−1∑

n=0

G
(α,β,r)
n,χ,q

tn−r

n!
+
∞∑

n=0

G
(α,β,r)
n+r,χ,q

( n+r
r )r!

tn

n!
,

(2.9)

where ( n+r
r ) = (n + r)!/n!r!.

By comparing the coefficients on the both sides of (2.9), we obtain the following
theorem.

Theorem 2.1. Let q ∈ Cp with |1 − q|p < 1 and n ∈ Z+. Then one has

G
(α,β,r)
0,χ,q = G

(α,β,r)
1,χ,q = · · · = G

(α,β,r)
r−1,χ,q = 0,

G
(α,β,r)
n+r,χ,q

( n+r
r )r!

=
∫

X

· · ·
∫

X︸ ︷︷ ︸
r-times

χ(x1) · · ·χ(xr)[x1 + · · · + xr]nqαdμ−qβ(x1) · · ·dμ−qβ(xr)

=
[2]r

qβ

(
1 − qα)n

f−1∑

a1,...,ar=0

n∑

l=0

(
n
l

)( r∏

i=1

χ(ai)

)
(−1)l+

∑r
i=1 aiq(αl+β)

∑r
i=1 ai

(
1 + qf(αl+β)

)r

= [2]r
qβ

∞∑

m=0

f−1∑

a1,...,ar=0

(
m + r − 1

m

)
(−1)

∑r
i=1 ai+mqβ(

∑r
i=1 ai+fm) ×

(
r∏

i=1

χ(ai)

)[
r∑

i=1

ai + fm

]n

qα

.

(2.10)

From now on, we define the multiple generalized q-Genocchi polynomials G(α,β,r)
n,χ,q (x)

with weight α and weak weight β.

F
(α,β,r)
χ,q (t, x) = [2]r

qβ
tr

∞∑

k1,...,kr=0

(−1)
∑r

i=1 kiqβ
∑r

i=1 ki

(
r∏

i=1

χ(ki)

)

e[
∑r

i=1 ki+x]qα t

= tr
∫

X

· · ·
∫

X︸ ︷︷ ︸
r-times

χ
(
y1
) · · ·χ(yr

)
e[x+y1+···+yr]qα tdμ−qβ

(
y1
) · · ·dμ−qβ

(
yr

)

=
∞∑

n=0

G
(α,β,r)
n,χ,q (x)

tn

n!
.

(2.11)
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Then we have

∞∑

n=0

∫

X

· · ·
∫

X︸ ︷︷ ︸
r-times

χ
(
y1
) · · ·χ(yr

)[
x + y1 + · · · + yr

]n
qαdμ−qβ

(
y1
) · · ·dμ−qβ

(
yr

) tn

n!

=
∞∑

n=0

G
(α,β,r)
n,χ,q (x)

tn−r

n!
=

r−1∑

n=0

G
(α,β,r)
n,χ,q (x)

tn−r

n!
+
∞∑

n=0

G
(α,β,r)
n+r,χ,q(x)

( n+r
r )r!

tn

n!
,

(2.12)

where ( n+r
r ) = (n + r)!/n!r!.

By comparing the coefficients on the both sides of (2.12), we have the following
theorem.

Theorem 2.2. Let q ∈ Cp with |1 − q|p < 1 and n ∈ Z+. Then one has

G
(α,β,r)
0,χ,q (x) = G

(α,β,r)
1,χ,q (x) = · · · = G

(α,β,r)
r−1,χ,q(x) = 0,

G
(α,β,r)
n+r,χ,q(x)

( n+r
r )r!

=
∫

X

· · ·
∫

X︸ ︷︷ ︸
r-times

χ
(
y1
) · · ·χ(yr

)[
x + y1 + · · · + yr

]n
qαdμ−qβ

(
y1
) · · ·dμ−qβ

(
yr

)

=
[2]r

qβ

(
1 − qα)n

f−1∑

a1,...,ar=0

n∑

l=0

(
n
l

)( r∏

i=1

χ(ai)

)
(−1)l+

∑r
i=1 aiqαlx+(αl+β)

∑r
i=1 ai

(
1 + qf(αl+β)

)r

= [2]r
qβ

∞∑

m=0

f−1∑

a1,...,ar=0

(
m + r − 1

m

)
(−1)

∑r
i=1 ai+mqβ(

∑r
i=1 ai+fm)

×
(

r∏

i=1

χ(ai)

)[
r∑

i=1

ai + fm + x

]n

qα

.

(2.13)

In (2.11), we simply identify that

lim
q→ 1

F
(α,β,r)
χ,q (t, x) = 2r tr

∞∑

k1,...,kr=0

(−1)
∑r

i=1 ki

(
r∏

i=1

χ(ki)

)

e(
∑r

i=1 ki+x)t

=

⎛

⎝2t
∑f−1

a=0 (−1)aχ(a)eat
1 + eft

⎞

⎠

r

etx = F
(r)
χ (t, x).

(2.14)

So far, we have studied the generating functions of the multiple generalized q-
Genocchi numbers G(α,β,r)

n,χ,q and polynomials G(α,β,r)
n,χ,q (x)with weight α and weak weight β.
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3. Modified Multiple Generalized q-Genocchi Polynomials with
Weight α and Weak Weight β

In this section, we will investigate about modified multiple generalized q-Genocchi numbers
and polynomials with weight α and weak weight β. Also, we will find their relations in
multiple generalized q-Genocchi numbers and polynomials with weight α and weak weight
β.

Firstly, we modify generating functions of G
(α,β,r)
n,χ,q and G

(α,β,r)
n,χ,q (x). We access some

relations connected to these numbers and polynomials with weight α and weak weight β.
For this reason, we assign generating function of modified multiple generalized q-Genocchi
numbers and polynomials with weight α and weak weight β which are implied by G

(α,β,r)
n,χ,q

and G
(α,β,r)
n,χ,q (x). We give relations between these numbers and polynomials with weight α and

weak weight β.
We modify (2.11) as follows:

F
(α,β,r)
χ,q (t, x) = F

(α,β,r)
χ,q

(
q−αxt, x

)
, (3.1)

where F(α,β,r)
χ,q (t, x) is defined in (2.11).

From the above we know that

F
(α,β,r)
χ,q (t, x) =

∞∑

n=0

q−(n+r)αxG(α,β,r)
n,χ,q (x)

tn

n!
. (3.2)

After some elementary calculations, we attain

F
(α,β,r)
χ,q (t, x) = q−αrxe(q

−αx[x]qα t)F
(α,β,r)
χ,q (t), (3.3)

where F(α,β,r)
χ,q (t) is defined in (2.8).

From the above, we can assign the modified multiple generalized q-Genocchi
polynomials ε(α,β,r)n,χ,q (x)with weight α and weak weight β as follows:

F
(α,β,r)
χ,q (t, x) =

∞∑

n=0

ε
(α,β,r)
n,χ,q (x)

tn

n!
. (3.4)

Then we have

ε
(α,β,r)
n,χ,q (x) = q−(n+r)αxG(α,β,r)

n,χ,q (x). (3.5)

Theorem 3.1. For r ∈ N and n ∈ Z+, one has

ε
(α,β,r)
n,χ,q (x) = q−(n+r)αx

n∑

i=0

(
n
i

)
qαix[x]n−iqα G

(α,β,r)
i,χ,q . (3.6)
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Corollary 3.2. For r ∈ N and n ∈ Z+, by using (3.7), one easily obtains

ε
(α,β,r)
n,χ,q (x) = q−(n+r)αx

∞∑

m=0

n∑

j=0

n−j∑

l=0

(
n

j, l, n − j − l
)(

n − j +m − 1
m

)
(−1)lqα{(j+l)x+m}G(α,β,r)

j,χ,q . (3.7)

Secandly, by using generating function of the multiple generalized q-Genocchi
polynomials with weight α and weak weight β, which is defined by (2.11), we obtain the
following identities.

By using (2.13), we find that

G
(α,β,r)
n+r,χ,q(x)

( n+r
r )r!

= [2]r
qβ

∞∑

m=0

f−1∑

a1,...,ar=0

(
m + r − 1

m

)
(−1)

∑r
i=1 ai+m

× qβ(
∑r

i=1 ai+fm)

(
r∏

i=1

χ(ai)

)[
r∑

i=1

ai + fm + x

]n

qα

= [2]r
qβ

f−1∑

a1,...,ar=0

n∑

l=0

l∑

a=0

(
n

a, l − a, n − l
)
(−1)a+

∑r
i=1 aiq{α(a+n−l)+β}

∑r
i=1 ai

×
(

r∏

i=1

χ(ai)

)
[x]n−lqα

(
1 − qα)l(1 + qf{α(a+n−l)+β}

)r .

(3.8)

Thus we have the following theorem.

Theorem 3.3. Let q ∈ Cp with |1 − q|p < 1 and r ∈ N. Then one has

G
(α,β,r)
n+r,χ,q(x)

( n+r
r )r!

= [2]r
qβ

f−1∑

a1,...,ar=0

n∑

l=0

l∑

a=0

(
n

a, l − a, n − l
)
(−1)a+

∑r
i=1 aiq{α(a+n−l)+β}

∑r
i=1 ai

×
(

r∏

i=1

χ(ai)

)
[x]n−lqα

(
1 − qα)l(1 + qf{α(a+n−l)+β}

)r .

(3.9)

By using (2.13), we have

F
(α,β,r)
χ,q (t, x) = [2]r

qβ
tr
∞∑

n=0

n∑

l=0

(
n
l

)
(−1)lqαlx
(
1 − q)n

f−1∑

a1,...,ar=0
(−1)

∑r
i=1 ai

× q(αl+β)(
∑r

i=1 ai)

(
r∏

i=1

χ(ai)

) ∞∑

m=0

(
m + r − 1

m

)(
−qf(αl+β)

)m tn

n!
.

(3.10)



International Journal of Mathematics and Mathematical Sciences 9

Thus we have

∞∑

n=0

G
(α,β,r)
n,χ,q (x)

tn

n!
=
∞∑

n=0
[2]r

qβ
tr

n∑

l=0

(
n
l

)
(−1)lqαlx(1 − qα)−n

f−1∑

a1,...,ar=0
(−1)

∑r
i=1 ai

× q(αl+β)(
∑r

i=1 ai)

(
r∏

i=1

χ(ai)

)(
1 + qf(αl+β)

)−r tn

n!
.

(3.11)

By comparing the coefficients of both sides of (n + r)!/tn+r in the above, we arrive at the
following theorem.

Theorem 3.4. Let q ∈ Cp with |1 − q|p < 1, r ∈ N. Then one has

G
(α,β,r)
n+r,χ,q(x)

( n+r
r )r!

= [2]r
qβ

n∑

l=0

(
n
l

)
(−1)lqαlx(1 − qα)−n

f−1∑

a1,...,ar=0
(−1)

∑r
i=1 ai

× q(αl+β)(
∑r

i=1 ai)

(
r∏

i=1

χ(ai)

)(
1 + qf(αl+β)

)−r
.

(3.12)

From (2.12), we easily know that

∞∑

n=0

G
(α,β,r)
n,χ,q (x)

tn

n!
=
∞∑

n=0
[2]r

qβ

(
n + r
r

)
r!

∞∑

k1,...,kr=0

(−1)
∑r

i=1 kiqβ
∑r

i=1 ki

(
r∏

i=1

χ(ki)

)

×
[

x +
r∑

i=1

ki

]n

qα

tn+r

(n + r)!
.

(3.13)

From the above, we get the following theorem.

Theorem 3.5. Let r ∈ N, k ∈ Z+. Then one has

G
(α,β,r)
0,χ,q (x) = G

(α,β,r)
1,χ,q (x) = · · · = G

(α,β,r)
r−1,χ,q(x) = 0,

G
(α,β,r)
l+r,χ,q(x) = [2]r

qβ

(
l + r
r

)
r!

∞∑

k1,...,kr=0

(−1)
∑r

i=1 kiqβ
∑r

i=1 ki

(
r∏

i=1

χ(ki)

)[

x +
r∑

i=1

ki

]l

qα

.
(3.14)
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From (2.13), we have

∞∑

n=0

G
(α,β,r)
n,χ,q (x)

tn

n!

∞∑

n=0

G
(α,β,s)
n,χ,q (x)

tn

n!

= [2]r+s
qβ

tr+s
f−1∑

a1,...,ar=0

∞∑

m=0

(
m + r − 1

m

)
(−1)

∑r
i=1 ai+mqβ(

∑r
i=1 ai+fm)

×
(

r∏

i=1

χ(ai)

)

e[
∑r

i=1 ai+fm+x]qα t
f−1∑

b1,...,bs=0

∞∑

k=0

(
k + s − 1

k

)
(−1)

∑s
i=1 bi+k

× qβ(
∑s

i=1 bi+fk)

(
s∏

i=1

χ(bi)

)

e[
∑r

i=1 bi+fk+x]qα t.

(3.15)

By using Cauchy product in (3.15), we obtain

∞∑

n=0

n∑

j=0

(
n
j

)
G

(α,β,r)
j,χ,q (x)G(α,β,s)

n−j,χ,q(x)
tn

n!

= [2]r+s
qβ

tr+s
∞∑

n=0

n∑

j=0

f−1∑

a1,...,ar=0

f−1∑

b1,...,bs=0

(
j + r − 1

j

)(
n − j + s − 1

n − j
)

× (−1)
∑r

i=1 ai+
∑s

i=1 bi+nqβ(
∑r

i=1 ai+
∑s

i=1 bi+fn)

(
r∏

i=1

χ(ai)

)(
s∏

i=1

χ(bi)

)

× e[
∑r

i=1 ai+fj+x]qα te[
∑s

i=1 bi+f(n−j)+x]qα t.

(3.16)

From (3.16), we have

∞∑

m=0

⎛

⎝
m∑

j=0

(
m
j

)
G

(α,β,r)
j,χ,q (x)G(α,β,s)

m−j,χ,q(x)

⎞

⎠ tm

m!

=
∞∑

m=0
[2]r+s

qβ
tr+s

∞∑

n=0

n∑

j=0

f−1∑

a1,...,ar=0

f−1∑

b1,...,bs=0

(
j + r − 1

j

)(
n − j + s − 1

n − j
)

× (−1)
∑r

i=1 ai+
∑s

i=1 bi+nqβ(
∑r

i=1 ai+
∑s

i=1 bi+fn)

(
r∏

i=1

χ(ai)

)(
s∏

i=1

χ(bi)

)

×
⎛

⎝
[

r∑

i=1

ai + fj + x

]

qα

+

[
s∑

i=1

bi + f(n − j) + x

]

qα

⎞

⎠

m

tm

m!
.

(3.17)

By comparing the coefficients of both sides of tm+r+s/(m + r + s)! in (3.17), we have the
following theorem.
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Theorem 3.6. Let r ∈ Nand s ∈ Z+. Then one has

∑l+r+s
j=0

(
l+r+s

j

)
G

(α,β,r)
j,χ,q (x)G(α,β,s)

l+r+s−j,χ,q(x)
(
l+r+s

l

)
(r + s)!

= [2]r+s
qβ

∞∑

n=0

n∑

j=0

f−1∑

a1,...,ar=0

f−1∑

b1,...,bs=0

(
j + r − 1

j

)(
n − j + s − 1

n − j
)

× (−1)
∑r

i=1 ai+
∑s

i=1 bi+nqβ(
∑r

i=1 ai+
∑s

i=1 bi+fn)

(
r∏

i=1

χ(ai)

)(
s∏

i=1

χ(bi)

)

×
⎛

⎝
[

r∑

i=1

ai + fj + x

]

qα

+

[
s∑

i=1

bi + f
(
n − j) + x

]

qα

⎞

⎠

l

.

(3.18)

Corollary 3.7. In (3.18) setting s = 1, one has

∑l+r+1
j=0

(
l+r+1

j

)
G

(α,β,r)
j,χ,q (x)G(α,β,1)

l+r+1−j,χ,q(x)
(
l+r+1

l

)
(r + 1)!

= [2]r+1
qβ

∞∑

n=0

n∑

j=0

f−1∑

a1,...,ar=0

f−1∑

b1=0

(
j + r − 1

j

)
(−1)

∑r
i=1 ai+b1+nqβ(

∑r
i=1 ai+b1+fn)

×
(

χ(b1)
r∏

i=1

χ(ai)

)⎛

⎝
[

r∑

i=1

ai + fj + x

]

qα

+
[
b1 + f

(
n − j) + x

]
qα

⎞

⎠

l

.

(3.19)

By using (2.13)we have the following theorem.

Theorem 3.8. Distribution theorem is as follows:

G
(α,β,r)
n+r,χ,q =

[
f
]n
qα

[
f
]r
−qβ

f−1∑

a1,...,ar=0
(−1)

∑r
i=1 aiqβ

∑r
i=1 ai

(
r∏

i=1

χ(ai)

)

G
(α,β,r)
n+r,qf

(
a1 + · · · + ar

f

)
,

G
(α,β,r)
n+r,χ,q(x) =

[
f
]n
qα

[
f
]r
−qβ

f−1∑

a1,...,ar=0
(−1)

∑r
i=1 aiqβ

∑r
i=1 ai

(
r∏

i=1

χ(ai)

)

G
(α,β,r)
n+r,qf

(
x + a1 + · · · + ar

f

)
.

(3.20)

4. Interpolation Function of Multiple Generalized q-Genocchi
Polynomials with Weight α and Weak Weight β

In this section, we see interpolation function of multiple generalized q-Genocchi polynomials
with weak weight α and find some relations.
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Let us define interpolation function of the G(α,β,r)
k+r,q (x) as follows.

Definition 4.1. Let q, s ∈ C with |q| < 1 and 0 < x ≤ 1. Then one defines

ζ
(α,β,r)
χ,q (s, x) = [2]r

qβ

∞∑

k1,...,kr=0

(−1)
∑r

i=1 kiqβ
∑r

i=1 ki
(∏r

i=1χ(ki)
)

[
x +
∑r

i=1 ki
]s
qα

. (4.1)

We call ζ(α,β,r)q (s, x) the multiple generalized Hurwitz type q-zeta funtion.
In (4.1), setting r = 1, we have

ζ
(α,β,1)
χ,q (s, x) = [2]qβ

∞∑

l=0

(−1)lqβlχ(l)
[x + l]sqα

= ζ
(α,β)
χ,q (s, x). (4.2)

Remark 4.2. It holds that

lim
q→ 1

ζ
(α,β,r)
χ,q (s, x) = 2r

∞∑

k1,...,kr=0

(−1)
∑r

i=1 ki
(∏r

i=1χ(ki)
)

(
x +
∑r

i=1 ki
)s . (4.3)

Substituting s = −n, n ∈ Z+ into (4.1), then we have,

ζ
(α,β,r)
χ,q (−n, x) = [2]r

qβ

∞∑

k1,...,kr=0

(−1)
∑r

i=1 kiqβ
∑r

i=1 ki

(
r∏

i=1

χ(ki)

)[

x +
r∑

i=1

ki

]n

qα

. (4.4)

Setting (3.14) into the above, we easily get the following theorem.

Theorem 4.3. Let r ∈ N, n ∈ Z+. Then one has

ζ
(α,β,r)
χ,q (−n, x) =

G
(α,β,r)
n+r,χ,q(x)

( n+r
r )r!

. (4.5)
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In this paper we construct the new analogues of Genocchi the numbers and polynomials. We also
observe the behavior of complex roots of the q-Genocchi polynomials Gn,q(x), using numerical
investigation. By means of numerical experiments, we demonstrate a remarkably regular structure
of the complex roots of the q-Genocchi polynomials Gn,q(x). Finally, we give a table for the
solutions of the q-Genocchi polynomials Gn,q(x).

1. Introduction

Many mathematicians have the studied Bernoulli numbers and polynomials, the Euler
numbers and polynomials, and the Genocchi numbers and the Genocchi polynomials. The
Bernoulli numbers and polynomials, the Euler numbers and polynomials, and the Genocchi
polynomials posses many interesting properties and arising in many areas of mathematics
and physics (see [1–12]). We introduce the new analogs of the Genocchi numbers and
polynomials. In the 21st century, the computing environment would make more and more
rapid progress. Using computer, a realistic study for new analogs of Genocchi numbers
and polynomials is very interesting. It is the aim of this paper to observe an interesting
phenomenon of “scattering” of the zeros of q-Genocchi polynomials Gn,q(x). The outline
of this paper is as follows. In Section 2, we study the q-Genocchi polynomials Gn,q(x).
In Section 3, we describe the beautiful zeros of q-Genocchi polynomials Gn,q(x) using a
numerical investigation. Also we display distribution and structure of the zeros of the
q-Genocchi polynomials Gn,q(x) by using computer. By using the results of our paper,
the readers can observe the regular behaviour of the roots of q-Genocchi polynomials
Gn,q(x). Finally, we carried out computer experiments that demonstrate a remarkably regular
structure of the complex roots of q-Genocchi polynomials Gn,q(x). Throughout this paper we
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use the following notations. By Zp we denote the ring of p-adic rational integers, Q denotes
the field of rational numbers, Qp denotes the field of p-adic rational numbers, C denotes the
complex number field, and Cp denotes the completion of algebraic closure of Qp. Let νp be
the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of q-
extension, q is considered in many ways such as an indeterminate, a complex number q ∈ C,
or p-adic number q ∈ Cp. If q ∈ C, one normally assumes that |q| < 1. If q ∈ Cp, we normally
assume that |q − 1|p < p−1/(p−1) so that qx = exp(x log q) for |x|p ≤ 1 :

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

. (1.1)

Compare [1, 2, 4, 10, 11, 13–16]. Hence, limq→ 1[x] = x for any x with |x|p ≤ 1 in the present
p-adic case. Let d be a fixed integer and let p be a fixed prime number. For any positive integer
N, we set

X = lim
←
N

(
Z

dpNZ

)
, X∗ =

⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
, a + dpNZp =

{
x ∈ X | x ≡ a

(
moddpN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N,

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

(1.3)

is known to be a distribution on X, cf. [1, 2, 4, 5, 9, 10, 13]. We say that g is a uniformly
differentiable function at a point a ∈ Zp and denote this property by g ∈ UD(Zp), if the
difference quotients Fg(x, y) = f(x) − f(y)/(x − y) have a limit l = g ′(a) as (x, y) → (a, a).
For

g ∈ UD
(
Zp

)
=
{
g | g : Zp −→ Cp is uniformly differentiable function

}
, (1.4)

the q-deformed bosonic p-adic integral of the function g is defined by Kim:

Iq
(
g
)
=
∫

Zp

g(x)dμq(x) = lim
N→∞

1
[
pN

]
q

∑

0≤x<pN
g(x)qx. (1.5)

Note that

qIq
(
f1
)
= Iq

(
f
)
+
(
q − 1)f(0) + q − 1

log q
f ′(0), (1.6)



International Journal of Mathematics and Mathematical Sciences 3

where f1(x) = f(x + 1), f ′(0) = df(0)/dx. Now, the fermionic p-adic invariant q-integral on
Zp is defined as

I−q
(
g
)
=
∫

Zp

g(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

∑

0≤x<pN
g(x)

(−q)x. (1.7)

If we take g1(x) = g(x + 1) in (1.7), then we easily see that

qI−q
(
g1
)
+ I−q

(
g
)
= [2]qg(0). (1.8)

From (1.8), we obtain

qnI−q
(
gn

)
+ (−1)n−1I−q

(
g
)
= [2]q

n−1∑

l=0

(−1)n−1−lg(l), (1.9)

where gn(x) = g(x + n). First, we introduce the Genocchi numbers and the Genocchi
polynomials. The Genocchi numbers Gn are defined by the generating function:

F(t) =
2t

et + 1
=
∞∑

n=0

Gn
tn

n!
, (|t| < π). (1.10)

Compare [4, 9–11, 17], where we use the technique method notation by replacing Gn by
Gn(n ≥ 0) symbolically. We consider the Genocchi polynomials Gn(x) as follows:

F(x, t) =
2t

et + 1
ext =

∞∑

n=0

Gn(x)
tn

n!
. (1.11)

Note that Gn(x) =
∑n

k=0(
n
k )Gkx

n−k. In the special case x = 0, we define Gn(0) = Gn.

2. An Analogue of the Genocchi Numbers and Polynomials

The versions of q-Genocchi numbers and polynomials, which were derived from different
considerations and different formulas, were defined by Kim [13, 14]. Kim [14] treated
analogue of the Genocchi numbers, which is called q-analogue of the Genocchi numbers.
Kim defined the q-extension of the Genocchi numbers and polynomials as follows:

Fq(t) =
∞∑

n=0

cn,q
tn

n!
= et/(1−q)

∞∑

n=0

(2n + 1)
[2n + 1]q

[n]q

(
1

q − 1
)n−1 tn

n!
,

Fq(x, t) =
∞∑

n=0

cn,q(x)
tn

n!
= et/(1−q)

∞∑

n=0

(2n + 1)
[2n + 1]q

[n]q

(
1

q − 1
)n−1

qnx
tn

n!
.

(2.1)
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In [14], Kim introduced the q-analogue of the Genocchi polynomials as follows:

Gq(x, t) = [2]qt
∞∑

n=0
(−1)nqn+xe[n+x]qt =

∞∑

n=0

Gn,q(x)
tn

n!
. (2.2)

We now consider another construction q-Genocchi numbers and polynomials. In (1.8), if we
take g(x) = ext, then one has

(
log q + t

)
∫

Zp

extdμ−q(x) =
[2]q

(
log q + t

)

qet + 1
. (2.3)

Let us define the q-Genocchi numbers and polynomials as follows:

(
log q + t

)
∫

Zp

eytdμ−q
(
y
)
=
∞∑

n=0

Gn,q
tn

n!
, (2.4)

(
log q + t

)
∫

Zp

e(x+y)tdμ−q
(
y
)
=
∞∑

n=0

Gn,q(x)
tn

n!
. (2.5)

Note that Gn,q(0) = Gn,q, limq→ 1Gn,q = Gn, where Gn are the nth Genocchi numbers. By (2.4)
and (2.5), we obtain the following Witt’s formula.

Theorem 2.1. For q ∈ Cp with |1 − q|p ≤ p−1/(p−1), we have

n

∫

Zp

xn−1dμ−q(x) + log q
∫

Zp

xndμ−q(x) = Gn,q,

n

∫

Zp

(
x + y

)n−1
dμ−q

(
y
)
+ log q

∫

Zp

(
x + y

)n
dμ−q

(
y
)
= Gn,q(x).

(2.6)

By the above theorem, easily see that

Gn,q(x) =
n∑

k=0

(
n
k

)
xn−kGk,q. (2.7)

Let q be a complex number with |q| < 1. By the meaning of (1.10) and (1.11), let us define the
q-Genocchi numbers Gn,q and polynomials Gn,q(x) as follows:

Fq(t) =
[2]q

(
log q + t

)

qet + 1
=
∞∑

n=0

Gn,q
tn

n!
,

Fq(x, t) =
[2]q

(
log q + t

)

qet + 1
ext =

∞∑

n=0

Gn,q(x)
tn

n!
.

(2.8)
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For q-Euler numbers, Kim constructed q-Euler numbers which can be uniquely determined
by

q
(
qEq + 1

)n + En,q =

{
[2]q, if n = 0,
0, if n > 0,

(2.9)

with the usual convention of symbolically replacing En
q by En,q, where En,q denotes the q-Euler

numbers. For q-Genocchi numbers, we have the following theorem.

Theorem 2.2. q-Genocchi numbers Gn,q are defined inductively by

G0,q =
[2]q log q

1 + q
, q

(
Gq + 1

)n +Gn,q =

{
[2]q, if n = 1,
0, if n > 1,

(2.10)

with the usual convention about replacing (Gq)
n by Gn,q in the binomial expansion.

Proof. From (2.4), we obtain

[2]q
(
log q + t

)

qet + 1
=
∞∑

n=0

Gn,q
tn

n!
=
∞∑

n=0

(
Gq

)n tn

n!
= eGqt, (2.11)

which yields

[2]q
(
log q + t

)
=
(
qet + 1

)
eGqt = qe(Gq+1)t + eGqt. (2.12)

Using the Taylor expansion of exponential function, we have

[2]q log q + [2]qt =
∞∑

n=0

{
q
(
Gq + 1

)n +
(
Gq

)n} tn

n!

= q
(
Gq + 1

)0 +
(
Gq

)0 + q
(
Gq + 1

)1 +
(
Gq

)1

+
∞∑

n=2

{
q
(
Gq + 1

)n +
(
Gq

)n} tn

n!
.

(2.13)

The result follows by comparing the coefficients.
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Figure 1: Curves of Gn,q.

Here is the list of the first q-Genocchi numbers Gn,q:

G0,q = log q,

G1,q = −
−1 − q + q log q

(
1 + q

) ,

G2,q =
q
(−2 − 2q − log q + q log q

)

(
1 + q

)2 ,

G3,q = −
q
(
3 − 3q2 + log q − 4q log q + q2 log q

)

(
1 + q

)3 ,

...

(2.14)

We display the shapes of the q-Genocchi numbers Gn,q. For n = 1, . . . , 10, we can draw a
curve ofGn,q, 1/10 ≤ q ≤ 9/10, respectively. This shows the ten curves combined into one. We
display the shape of Gn,q : (Figure 1).

Because

∂

∂x
Fq(t, x) = tFq(t, x) =

∞∑

n=0

d

dx
Gn,q(x)

tn

n!
, (2.15)
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it follows the important relation

d

dx
Gn,q(x) = nGn−1,q(x). (2.16)

Here is the list of the first the q-Genocchi polynomials Gn,q(x):

G0,q(x) = log q,

G1,q(x) =

(
1 + q − q log q + x log q + qx log q

)

(
1 + q

) ,

...

(2.17)

Since

∞∑

l=0

Gl,q

(
x + y

) tl

l!
=

[2]q log q + [2]qt

qet + 1
e(x+y)t

=
∞∑

n=0

Gn,q(x)
tn

n!

∞∑

m=0

ym tm

m!

=
∞∑

l=0

(
l∑

n=0

Gn,q(x)
tn

n!
yl−n tl−n

(l − n)!

)

=
∞∑

l=0

(
l∑

n=0

(
l
n

)
Gn,q(x)yl−n

)
tl

l!
,

(2.18)

we have the following theorem.

Theorem 2.3. q-Genocchi polynomials Gn,q(x) satisfy the following relation:

Gl,q

(
x + y

)
=

l∑

n=0

(
l
n

)
Gn,q(x)yl−n. (2.19)
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It is easy to see that

∞∑

n=0

Gn,q(x)
tn

n!
=

[2]q log q + [2]qt

qet + 1
ext

=
[2]q

m[2]qm

m−1∑

a=0
(−1)aqa

[2]qm log qm + [2]qmmt

qmemt + 1
e(a/m+x/m)(mt)

=
[2]q

m[2]qm

m−1∑

a=0
(−1)aqa

∞∑

n=0

Gn,qm

(
a + x

m

)
(mt)n

n!

=
∞∑

n=0

(

mn−1 [2]q
[2]qm

m−1∑

a=0
(−1)aqaGn,qm

(
a + x

m

))
tn

n!
.

(2.20)

Hence we have the following theorem.

Theorem 2.4. For any positive integerm(=odd), one obtains

Gn,q(x) = mn−1 [2]q
[2]qm

m−1∑

i=0
(−1)iqiGn,qm

(
i + x

m

)
, for n ≥ 0. (2.21)

3. Distribution and Structure of the Zeros

In this section, we investigate the zeros of the q-Genocchi polynomials Gn,q(x) by using
computer. We display the shapes of the q-Genocchi polynomials Gn,q(x). For n = 1, . . . , 10,
we can draw a curve of Gn,q(x),−2 ≤ x ≤ 2, respectively. This shows the ten curves combined
into one. We display the shape of Gn,q(x) (Figures 2, 3, 4, and 5).

We plot the zeros of Gn,q(x), x ∈ C for n = 10, 20, 25, 30, q = 1/3 (Figures 6, 7, 8, and 9).
Next, we plot the zeros of Gn,q(x), x ∈ C for n = 30, q = 1/2, 1/3, 1/4, 1/5. (Figures 10,

11, 12, and 13).
In Figures 6, 7, 8, 9, 10, 11, 12, and 13, Gn,q(x), x ∈ C, has Im(x) = 0 reflection

symmetry. This translates to the following open problem: prove or disprove: Gn,q(x), x ∈ C,
has Im(x) = 0 reflection symmetry. Our numerical results for numbers of real and complex
zeros of Gn,q(x), q = 1/2, 1/3, are displayed in Table 1.

Figure 15 shows the distribution of real zeros of Gn,q(x) for 1 ≤ n ≤ 20.
In Figure 15(a), we choose q = 1/10. In Figure 15(b), we choose q = 3/10. In Figure

15(c), we choose q = 5/10. In Figure 15(d), we choose q = 6/10.
We calculated an approximate solution satisfying Gn,q(x), q = 1/2, 1/3, x ∈ R. The

results are given in Tables 2 and 3.
The plot above shows Gn,q(x) for real 1/10 ≤ q ≤ 9/10 and −3 ≤ x ≤ 3, with the zero

contour indicated in black (Figure 16). In Figure 16(a), we choose n = 2. In Figure 16(b), we
choose n = 3. In Figure 16(c), we choose n = 4. In Figure 16(d), we choose n = 5.

We will consider the more general open problem. In general, how many roots does
Gn,q(x) have? Prove or disprove: Gn,q(x) has n distinct solutions. Find the numbers of
complex zeros CGn,q(x) of Gn,q(x), Im(x)/= 0. Prove or give a counterexample: Conjecture: since
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Figure 6: Zero of G10,1/3(x).
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Figure 7: Zero of G20,1/3(x).
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Figure 8: Zero of G25,1/3(x).
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Figure 9: Zero of G30,1/3(x).
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Figure 10: Zero of G30,1/2(x).
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Figure 11: Zero of G30,1/3(x).
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Figure 12: Zero of G30,1/4(x).
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Figure 13: Zero of G30,1/5(x).
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Figure 14: Stacks of zeros Gn,1/3(x) for 1 ≤ n ≤ 30.
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Figure 15: Plot of real zeros of Gn,q(x) for 1 ≤ n ≤ 20.
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Table 1: Numbers of real and complex zeros of Gn,q(x).

Degree n q = 1/2 q = 1/3
Real zeros Complex zeros Real zeros Complex zeros

1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 4 0
5 3 2 3 2
6 4 2 4 2
7 5 2 5 2
8 4 4 6 2
9 5 4 5 4
10 4 6 4 6

Table 2: Approximate solutions of Gn,1/2(x) = 0, x ∈ R.

Degree n x

1 1.7760
2 0.2583, 3.294
3 −0.1698, 0.7313, 4.767
4 −0.4188, 0.1527, 1.145, 6.225
5 0.5848, 1.492, 7.677
6 0.01656, 1.017, 1.772, 9.126
7 −0.5269, 0.4468, 1.452, 1.974, 10.573
8 −0.8536, −0.1221, 0.8779, 12.019
9 −0.969, −0.707, 0.3088, 1.309, 13.46
10 −0.2604, 0.7396, 1.738, 14.91

Table 3: Approximate solutions of Gn,1/3(x) = 0, x ∈ R.

Degree n x

1 1.1602
2 0.1523, 2.168
3 −0.2107, 0.5657, 3.126
4 −0.3621, −0.02976, 0.9703, 4.062
5 0.3561, 1.333, 4.989
6 −0.2472, 0.7504, 1.652, 5.910
7 −0.6547, 0.1435, 1.144, 1.923, 6.828
8 −0.798, −0.4682, 0.5362, 1.540, 2.139, 7.744
9 −0.07080, 0.9292, 1.98, 2.25, 8.659
10 −0.673, 0.3221, 1.322, 9.573

n is the degree of the polynomial Gn,q(x), the number of real zeros RGn,q(x) lying on the real
plane Im(x) = 0 is then RGn,q(x) = n−CGn,q(x), where CGn,q(x) denotes complex zeros. See Table 1
for tabulated values of RGn,q(x) and CGn,q(x). Find the equation of envelope curves bounding
the real zeros lying on the plane and the equation of a trajectory curve running through the
complex zeros on any one of the arcs. For n = 1, . . . , 10, we can draw a plot of the Gn,q(x),
respectively. This shows the ten curves combined into one. These figures givemathematicians
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Figure 16: Zero contour of Gn,q(x).

an unbounded capacity to create visual mathematical investigations of the behavior of the
Gn,q(x) and roots of the Gn,q(x) (Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16).
Moreover, it is possible to create new mathematical ideas and analyze them in ways that
generally are not possible by hand. The author has no doubt that investigation along this
line will lead to a new approach employing numerical method in the field of research of the
q-Genocchi polynomials Gn,q(x) to appear in mathematics and physics. For related topics the
interested reader is referred to [15–19].
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We derive some new and interesting identities involving Bernoulli and Euler numbers by using
some polynomial identities and p-adic integrals on Zp.

1. Introduction and Preliminaries

Let p be a fixed odd prime. Throughout this paper, Zp,Qp,Cp will, respectively, denote the
ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic
closure of Qp. The p-adic absolute value | |p on Cp is normalized so that |p|p = 1/p. Let Z>0 be
the set of natural numbers and Z≥0 = Z>0 ∪ {0}.

As is well known, the Bernoulli polynomials Bn(x) are defined by the generating
function as follows:

F(t, x) =
t

et − 1e
xt = eB(x)t =

∞∑

n=0

Bn(x)
tn

n!
, (1.1)

with the usual convention of replacing B(x)n by Bn(x).
In the special case, x = 0, Bn(0) = Bn is referred to as the nth Bernoulli number. That is,

the generating function of Bernoulli numbers is given by

F(t) = F(t, 0) =
t

et − 1 =
∞∑

n=0

Bn
tn

n!
= eBt, (1.2)

with the usual convention of replacing Bn by Bn, (cf. [1–23]).
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From (1.2), we see that the recurrence formula for the Bernoulli numbers is

(B + 1)n − Bn = δ1,n, for n ∈ Z≥0, (1.3)

where δk,n is the Kronecker symbol.
By (1.1) and (1.2), we easily get the following:

Bn(x) = (B + x)n =
n∑

l=0

(
n
l

)
Blx

n−l =
n∑

l=0

(
n
l

)
Bn−lxl, for n ∈ Z≥0. (1.4)

Let UD(Zp) be the space of uniformly differentiable Cp-valued functions on Zp. For f ∈
UD(Zp), the bosonic p-adic integral on Zp is defined by

I
(
f
)
=
∫

Zp

f(x)dμ(x) = lim
N→∞

1
pN

pN−1∑

x=0

f(x), (1.5)

(cf. [12]). Then it is easy to see that

I
(
f1
)
= I
(
f
)
+ f ′(0), (1.6)

where f1(x) = f(x + 1) and f ′(0) = df(x)/dx|x=0.
By (1.6), we have the following:

∫

Zp

e(x+y)tdμ
(
y
)
=

t

et − 1e
xt =

∞∑

n=0

Bn(x)
tn

n!
, (1.7)

(cf. [12–14]). From (1.7), we can derive the Witt’s formula for the nth Bernoulli polynomial
as follows:

∫

Zp

(
x + y

)n
dμ
(
y
)
= Bn(x), for n ∈ Z≥0. (1.8)

By (1.1), we have the following:

Bn(1 − x) = (−1)nBn(x), for n ∈ Z≥0. (1.9)

Thus, from (1.3), (1.4), and (1.9), we have the following:

Bn(1) = Bn + δ1,n = (−1)nBn, for n ∈ Z≥0. (1.10)

By (1.4), we have the following:

Bn

(
x + y

)
=

n∑

k=0

(
n
k

)
Bk(x)yn−k, for n ∈ Z≥0. (1.11)
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Especially, for x = 1 and y = 1,

Bn(2) =
n∑

k=0

(
n
k

)
Bk(1) =

n∑

k=0

(
n
k

)
(Bk + δ1,k), for n ∈ Z≥0. (1.12)

Therefore, from (1.9), (1.10), and (1.12), we can derive the following relation. For n ∈ Z≥0,

(−1)nBn(−1) = Bn(2) = n + Bn(1) = n + Bn + δ1,n = n + (−1)nBn. (1.13)

Let f(y) = (x + y)n+1. By (1.6), we have the following:

∫

Zp

(
x + y + 1

)n+1
dμ
(
y
) −
∫

Zp

(
x + y

)n+1
dμ
(
y
)
= (n + 1)xn, for n ∈ Z≥0. (1.14)

By (1.8) and (1.14), we have the following:

Bn+1(x + 1) − Bn+1(x) = (n + 1)xn, for n ∈ Z≥0. (1.15)

Thus, by (1.11) and (1.15), we have the following identity.

xn =
1

n + 1

n∑

l=0

(
n + 1
l

)
Bl(x), for n ∈ Z≥0. (1.16)

As is well known, the Euler polynomials En(x) are defined by the generating function
as follows:

G(t, x) =
2

et + 1
ext = eE(x)t =

∞∑

n=0

En(x)
tn

n!
, (1.17)

with the usual convention of replacing E(x)n by En(x).
In the special case, x = 0, En(0) = En is referred to as the nth Euler number. That is, the

generating function of Euler numbers is given by

G(t) = G(t, 0) =
2

et + 1
=
∞∑

n=0

En
tn

n!
= eEt, (1.18)

with the usual convention of replacing En by En, (cf. [1–23]).
From (1.18), we see that the recurrence formula for the Euler numbers is

(E + 1)n + En = 2δ0,n, for n ∈ Z≥0. (1.19)
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By (1.17) and (1.18), we easily get the following:

En(x) = (E + x)n =
n∑

l=0

(
n
l

)
Elx

n−l =
n∑

l=0

(
n
l

)
En−lxl, for n ∈ Z≥0. (1.20)

Let C(Zp) be the space of continuous Cp-valued functions on Zp. For f ∈ C(Zp), the fermionic
p-adic integral on Zp is defined by Kim as follows:

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x, (1.21)

(cf. [9]). Then it is easy to see that

I−1
(
f1
)
+ I−1

(
f
)
= 2f(0), (1.22)

where f1(x) = f(x + 1).
By (1.22), we have the following:

∫

Zp

e(x+y)tdμ−1
(
y
)
=

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
. (1.23)

From (1.23), we can derive the Witt’s formula for the n-th Euler polynomial as follows:

∫

Zp

(
x + y

)n
dμ−1

(
y
)
= En(x), for n ∈ Z≥0. (1.24)

By (1.17), we have the following:

En(1 − x) = (−1)nEn(x), for n ∈ Z≥0. (1.25)

Thus, from (1.19), (1.20), and (1.25), we have the following:

En(1) = −En + 2δ0,n = (−1)nEn, for n ∈ Z≥0. (1.26)

By (1.20), we have the following:

En

(
x + y

)
=

n∑

k=0

(
n
k

)
Ek(x)yn−k, for n ∈ Z≥0. (1.27)

Especially, for x = 1 and y = 1,

En(2) =
n∑

k=0

(
n
k

)
Ek(1) =

n∑

k=0

(
n
k

)
(−En + 2δ0,k), for n ∈ Z≥0. (1.28)
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Therefore, from (1.25), (1.26), and (1.28), we can derive the following relations. For n ∈ Z≥0,

(−1)nEn(−1) = En(2) = 2 − En(1) = 2 + En − 2δ0,n = 2 − (−1)nEn. (1.29)

Let f(y) = (x + y)n. By (1.22), we have the following:

∫

Zp

(
x + y + 1

)n
dμ−1

(
y
)
+
∫

Zp

(
x + y

)n
dμ−1

(
y
)
= 2xn, for n ∈ Z≥0. (1.30)

By (1.24) and (1.30), we have the following:

En(x + 1) + En(x) = 2xn, for n ∈ Z≥0. (1.31)

Thus, by (1.27) and (1.31), we get the following identity.

xn =
1
2

n−1∑

l=0

(
n
l

)
El(x) + En(x), for n ∈ Z≥0. (1.32)

The Bernstein polynomials are defined by

Bk,n(x) =
(
n
k

)
xk(1 − x)n−k, for k, n ∈ Z≥0, (1.33)

with 0 ≤ k ≤ n (cf. [14]).
By the definition of Bk,n(x), we note that

Bk,n(x) = Bn−k,n(1 − x). (1.34)

In this paper, we derive some new and interesting identities involving Bernoulli and
Euler numbers from well-known polynomial identities. Here, we note that our results are
“complementary” to those in [6], in the sense that we take a fermionic p-adic integral where
a bosonic p-adic integral is taken and vice versa, and we use the identity involving Euler
polynomials in (1.32) where that involving Bernoulli polynomials in (1.16) is used and vice
versa. Finally, we report that there have been a lot of research activities on this direction
of research, namely, on derivation of identities involving Bernoulli and Euler numbers and
polynomials by exploiting bosonic and fermionic p-adic integrals (cf. [6–8]).
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2. Identities Involving Bernoulli Numbers

Taking the bosonic p-adic integral on both sides of (1.16), we have the following:

∫

Zp

xmdμ(x) =
∫

Zp

1
m + 1

m∑

k=0

(
m + 1
k

)
Bk(x)dμ(x)

=
1

m + 1

m∑

k=0

(
m + 1
k

)∫

Zp

Bk(x)dμ(x)

=
1

m + 1

m∑

k=0

(
m + 1
k

) k∑

j=0

(
k
j

)
Bk−j

∫

Zp

xjdμ(x)

=
1

m + 1

m∑

k=0

(
m + 1
k

) k∑

j=0

(
k
j

)
Bk−jBj .

(2.1)

Therefore, we obtain the following theorem.

Theorem 2.1. Letm ∈ Z≥0. Then on has the following:

Bm =
1

m + 1

m∑

k=0

k∑

j=0

(
m + 1
k

)(
k
j

)
Bk−jBj . (2.2)

Let us apply (1.9) to the bosonic p-adic integral of (1.16).

∫

Zp

xmdμ(x) =
1

m + 1

m∑

k=0

(
m + 1
k

)∫

Zp

Bk(x)dμ(x)

=
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

∫

Zp

Bk(1 − x)dμ(x)

=
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−j

∫

Zp

(1 − x)jdμ(x)

=
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−j(−1)jBj(−1).

(2.3)

Then, we can express (2.3) in three different ways.
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By (1.13), (2.3) can be written as

∫

Zp

xmdμ(x) =
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−j

(
j + Bj + δ1,j

)

=
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

⎛

⎝kBk−1(1) + kBk−1 +
k∑

j=0

(
k
j

)
Bk−jBj

⎞

⎠

= −
m−1∑

k=0

(
m
k

)(
Bk + (−1)kBk

)
+

1
m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−jBj

= −
m−1∑

k=0

(
m
k

)
(Bk + Bk + δ1,k) +

1
m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−jBj

= −2(Bm(1) − Bm) − (m − δ1,m) + 1
m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−jBj

= −δ1,m −m +
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−jBj .

(2.4)

Thus, we have the following theorem.

Theorem 2.2. Letm ∈ Z≥0. Then one has the following:

Bm = −δ1,m −m +
1

m + 1

m∑

k=0

k∑

j=0

(
m + 1
k

)(
k
j

)
(−1)kBk−jBj . (2.5)

Corollary 2.3. Letm be an integer ≥ 2. Then one has the following:

Bm +m =
1

m + 1

m∑

k=0

k∑

j=0

(
m + 1
k

)(
k
j

)
(−1)kBk−jBj . (2.6)

Especially, for an odd integer mwith m ≥ 3, we obtain the following corollary.

Corollary 2.4. Letm be an odd integer withm ≥ 3. Then one has the following:

m(m + 1) =
m∑

k=0

k∑

j=0

(
m + 1
k

)(
k
j

)
(−1)kBk−jBj . (2.7)
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By (1.13), (2.3) can be written as

∫

Zp

xmdμ(x) =
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
Bk−j

(
j + (−1)jBj

)

=
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

⎛

⎝kBk−1(1) +
k∑

j=0

(
k
j

)
(−1)jBk−jBj

⎞

⎠

= −
m−1∑

k=0

(
m
k

)
Bk +

1
m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
(−1)jBk−jBj

= −Bm(1) + Bm +
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
(−1)jBk−jBj .

(2.8)

By (1.10), (2.8) can be written as

∫

Zp

xmdμ(x) = (−1)m+1Bm + Bm +
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
(−1)jBk−jBj . (2.9)

So, we get the following theorem.

Theorem 2.5. Letm ∈ Z≥0. Then one has the following:

Bm =
1

m + 1

m∑

k=0

k∑

j=0

(
m + 1
k

)(
k
j

)
(−1)m+k+jBk−jBj . (2.10)

By (1.10), (2.8) can also be written as

∫

Zp

xmdμ(x) = −δ1,m +
1

m + 1

m∑

k=0

(
m + 1
k

)
(−1)k

k∑

j=0

(
k
j

)
(−1)jBk−jBj . (2.11)

Thus, we have the following theorem.

Theorem 2.6. Letm ∈ Z≥0. Then one has the following:

Bm = −δ1,m +
1

m + 1

m∑

k=0

k∑

j=0

(
m + 1
k

)(
k
j

)
(−1)k+jBk−jBj . (2.12)
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3. Identities Involving Euler Numbers

Taking the fermionic p-adic integral on both sides of (1.32), we have the following:

∫

Zp

xmdμ−1(x) =
∫

Zp

(

Em(x) +
1
2

m−1∑

k=0

(
m
k

)
Ek(x)

)

dμ−1(x)

=
m∑

l=0

(
m
l

)
Em−l

∫

Zp

xldμ−1(x) +
1
2

m−1∑

k=0

(
m
k

) k∑

j=0

(
k
j

)
Ek−j

∫

Zp

xjdμ−1(x)

=
m∑

l=0

(
m
l

)
Em−lEl +

1
2

m−1∑

k=0

(
m
k

) k∑

j=0

(
k
j

)
Ek−jEj .

(3.1)

So, we obtain the following theorem.

Theorem 3.1. Letm ∈ Z≥0. Then one has the following:

Em =
m∑

l=0

(
m
l

)
Em−lEl +

1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
Ek−jEj . (3.2)

Let us apply (1.25) to the fermionic p-adic integral of (1.32).

∫

Zp

xmdμ−1(x) = (−1)m
∫

Zp

Em(1 − x)dμ−1(x) + 1
2

m−1∑

k=0

(
m
k

)
(−1)k

∫

Zp

Ek(1 − x)dμ−1(x)

= (−1)m
m∑

k=0

(
m
k

)
Em−k(−1)kEk(−1)

+
1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−j(−1)jEj(−1).

(3.3)

Then, we can express (3.3) in two different ways.
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By (1.29), (3.3) can be written as

∫

Zp

xmdμ−1(x) = (−1)m
m∑

k=0

(
m
k

)
Em−k(2 + Ek − 2δ0,k)

+
1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−j

(
2 + Ej − 2δ0,j

)

= 2Em + (−1)m
m∑

k=0

(
m
k

)
Em−kEk + 2(−1)m+1Em +

m−1∑

k=0

(
m
k

)
Ek

+
1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−jEj +

m−1∑

k=0

(
m
k

)
(−1)k+1Ek

= 2Em + (−1)m
m∑

k=0

(
m
k

)
Em−kEk + 2(−1)m+1Em + Em(1) − Em

+
1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−jEj + (−1)m+1(Em(−1) − Em)

= −2 + 2δ0,m + (−1)m
m∑

k=0

(
m
k

)
Em−kEk +

1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−jEj .

(3.4)

Thus, we get the following theorem.

Theorem 3.2. Letm ∈ Z≥0. Then one has the following:

Em = −2 + 2δ0,m + (−1)m
m∑

k=0

(
m
k

)
Em−kEk +

1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−jEj . (3.5)

Corollary 3.3. Letm ∈ Z>0. Then one has the following:

Em + 2 = (−1)m
m∑

k=0

(
m
k

)
Em−kEk +

1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−jEj . (3.6)
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By (1.29), (3.3) can be written as

∫

Zp

xmdμ−1(x) = (−1)m
m∑

k=0

(
m
k

)
Em−k

(
2 − (−1)kEk

)

+
1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)kEk−j

(
2 − (−1)jEj

)

= 2Em + (−1)m+1
m∑

k=0

(
m
k

)
(−1)kEm−kEk

+
m−1∑

k=0

(
m
k

)
Ek − 1

2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)k(−1)jEk−jEj

= 2Em + (−1)m+1
m∑

k=0

(
m
k

)
(−1)kEm−kEk

+ Em(1) − Em − 1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)k(−1)jEk−jEj

= 2δ0,m + (−1)m+1
m∑

k=0

(
m
k

)
(−1)kEm−kEk

− 1
2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)k(−1)jEk−jEj .

(3.7)

So, we have the following theorem.

Theorem 3.4. Letm ∈ Z≥0. Then one has the following:

Em = 2δ0,m + (−1)m+1
m∑

k=0

(
m
k

)
(−1)kEm−kEk − 1

2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)k+jEk−jEj . (3.8)

Corollary 3.5. Letm ∈ Z>1. Then one has the following:

Em = (−1)m+1
m∑

k=0

(
m
k

)
(−1)kEm−kEk − 1

2

m−1∑

k=0

k∑

j=0

(
m
k

)(
k
j

)
(−1)k+jEk−jEj . (3.9)
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4. Identities Involving Bernoulli and Euler Numbers

By (1.16) and (1.32), we have the following:

∫

Zp

xm+ndμ(x) =
∫

Zp

(
1

m + 1

m∑

k=0

(
m + 1
k

)
Bk(x)

)(

En(x) +
1
2

n−1∑

l=0

(
n
l

)
El(x)

)

dμ(x)

=
1

m + 1

m∑

k=0

(
m + 1
k

)∫

Zp

Bk(x)En(x)dμ(x)

+
1

2(m + 1)

m∑

k=0

(
m + 1
k

) n−1∑

l=0

(
n
l

)∫

Zp

Bk(x)El(x)dμ(x)

=
1

m + 1

m∑

k=0

k∑

j=0

n∑

l=0

(
m + 1
k

)(
k
j

)(
n
l

)
Bk−jEn−lBj+l

+
1

2(m + 1)

m∑

k=0

n−1∑

l=0

k∑

j=0

l∑

i=0

(
m + 1
k

)(
n
l

)(
k
j

)(
l
i

)
Bk−jEl−iBj+i.

(4.1)

Therefore, we get the following theorem.

Theorem 4.1. Letm,n ∈ Z≥0. Then one has the following:

Bm+n =
1

m + 1

m∑

k=0

k∑

j=0

n∑

l=0

(
m + 1
k

)(
k
j

)(
n
l

)
Bk−jEn−lBj+l

+
1

2(m + 1)

m∑

k=0

n−1∑

l=0

k∑

j=0

l∑

i=0

(
m + 1
k

)(
n
l

)(
k
j

)(
l
i

)
Bk−jEl−iBj+i.

(4.2)

By (1.16) and (1.33), we have the following:

∫

Zp

xmBk,n(x)dμ(x) =
∫

Zp

1
m + 1

m∑

l=0

(
m + 1

l

)
Bl(x)Bk,n(x)dμ(x)

=
1

m + 1

(
n
k

) m∑

l=0

l∑

i=0

(
m + 1

l

)(
l
i

)
Bl−i

∫

Zp

xi+k(1 − x)n−kdμ(x)

=
1

m + 1

(
n
k

) m∑

l=0

l∑

i=0

n−k∑

j=0

(
m + 1

l

)(
l
i

)(
n − k
j

)
(−1)jBl−i

∫

Zp

xi+k+jdμ(x)

=
1

m + 1

(
n
k

) m∑

l=0

l∑

i=0

n−k∑

j=0

(
m + 1

l

)(
l
i

)(
n − k
j

)
(−1)jBl−iBi+k+j .

(4.3)
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By (1.33), we have the following:

∫

Zp

xmBk,n(x)dμ(x) =
(
n
k

)∫

Zp

xm+k(1 − x)n−kdμ(x)

=
(
n
k

) n−k∑

j=0

(
n − k
j

)
(−1)j

∫

Zp

xm+k+jdμ(x)

=
(
n
k

) n−k∑

j=0

(
n − k
j

)
(−1)jBm+k+j .

(4.4)

By (4.3) and (4.4), we obtain the following theorem.

Theorem 4.2. Letm,n, k ∈ Z≥0. Then one has the following:

n−k∑

j=0

(
n − k
j

)
(−1)jBm+k+j =

1
m + 1

m∑

l=0

l∑

i=0

n−k∑

j=0

(
m + 1

l

)(
l
i

)(
n − k
j

)
(−1)jBl−iBi+k+j . (4.5)

Especially, one has the following:

(m + 1)Bm+n =
m∑

l=0

l∑

i=0

(
m + 1

l

)(
l
i

)
Bl−iBi+n. (4.6)

By (4.2) and (4.6), we have the following theorem. Note that (4.8) in the following was
obtained in [6].

Theorem 4.3. Letm,n ∈ Z≥0. Then one has the following:

Bm+n =
n∑

l=0

(
n
l

)
En−lBm+l +

1
2

n−1∑

l=0

l∑

i=0

(
n
l

)(
l
i

)
El−iBm+i. (4.7)

In particular, we have the following:

Bn =
n∑

l=0

(
n
l

)
En−1Bl +

1
2

n−1∑

l=0

l∑

i=0

(
n
l

)(
l
i

)
El−iBi. (4.8)
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We give some interesting identities on the Bernoulli numbers and polynomials, on the Genocchi
numbers and polynomials by using symmetric properties of the Bernoulli and Genocchi
polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp,Qp, and Cp will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
the algebraic closure of Qp. Let N be the set of natural numbers and Z+ = N ∪ {0}. The p-adic
norm on Cp is normalized so that |p|p = p−1. Let C(Zp) be the space of continuous functions
on Zp. For f ∈ C(Zp), the fermionic p-adic integral on Zp is defined by Kim as follows:

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x (1.1)

(see [1–16]). From (1.1), we have

I−1
(
f1
)
= −I−1

(
f
)
+ 2f(0) (1.2)

(see [1–16]), where f1(x) = f(x + 1).
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Let us take f(x) = ext. Then, by (1.2), we get

t

∫

Zp

extdμ−1(x) =
2t

et + 1
=
∞∑

n=0

Gn
tn

n!
, (1.3)

where Gn are the nth ordinary Genocchi numbers (see [8, 15]).
From the same method of (1.3), we can also derive the following equation:

t

∫

Zp

e(x+y)tdμ−1
(
y
)
=

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
, (1.4)

where Gn(x) are called the nth Genocchi polynomials (see [14, 15]).
By (1.3), we easily see that

Gn(x) =
n∑

l=0

(
n
l

)
Glx

n−l (1.5)

(see [15]). By (1.3) and (1.4), we get Witt’s formula for the nth Genocchi numbers and
polynomials as follows:

∫

Zp

xndμ−1(x) =
Gn+1

n + 1
,

∫

Zp

(
x + y

)n
dμ−1

(
y
)
=

Gn+1(x)
n + 1

, for n ∈ Z+. (1.6)

From (1.2), we have

∫

Zp

(x + 1)ndμ−1(x) +
∫

Zp

xndμ−1(x) = 2δ0,n, (1.7)

where the symbol δ0,n is the Kronecker symbol (see [4, 5]).
Thus, by (1.5) and (1.7), we get

(G + 1)n +Gn = 2δ1,n (1.8)

(see [15]). From (1.4), we can derive the following equation:

∫

Zp

(
1 − x + y

)n
dμ−1

(
y
)
= (−1)n

∫

Zp

(
x + y

)n
dμ−1

(
y
)
. (1.9)

By (1.6) and (1.9), we see that

Gn+1(1 − x)
n + 1

= (−1)nGn+1(x)
n + 1

. (1.10)

Thus, by (1.10), we get Gn+1(2)/(n + 1) = (−1)n(Gn+1(−1)/(n + 1)).
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From (1.5) and (1.8), we have

Gn+1(2)
n + 1

= 2 − Gn+1(1)
n + 1

= 2 +
Gn+1

n + 1
− 2δ1,n+1. (1.11)

The Bernoulli polynomials Bn(x) are defined by

t

et − 1e
xt = eB(x)t =

∞∑

n=0

Bn(x)
tn

n!
(1.12)

(see [6, 9, 12]) with the usual convention about replacing Bn(x) by Bn(x).
In the special case, x = 0, Bn(0) = Bn is called the n-th Bernoulli number. By (1.12), we

easily see that

Bn(x) =
n∑

l=0

(
n
l

)
xn−lBl = (B + x)n (1.13)

(see [6]). Thus, by (1.12) and (1.13), we get reflection symmetric formula for the Bernoulli
polynomials as follows:

Bn(1 − x) = (−1)nBn(x), (1.14)

B0 = 1, (B + 1)n − Bn = δ1,n (1.15)

(see [6, 9, 12]). From (1.14) and (1.15), we can also derive the following identity:

(−1)nBn(−1) = Bn(2) = n + Bn(1) = n + Bn + δ1,n. (1.16)

In this paper, we investigate some properties of the fermionic p-adic integrals on Zp. By using
these properties, we give some new identities on the Bernoulli and the Euler numbers which
are useful in studying combinatorics.

2. Identities on the Bernoulli and Genocchi Numbers and Polynomials

Let us consider the following fermionic p-adic integral on Zp as follows:

I1 =
∫

Zp

Bn(x)dμ−1(x) =
n∑

l=0

(
n
l

)
Bn−l

∫

Zp

xldμ−1(x)

=
n∑

l=0

(
n
l

)
Bn−l

Gl+1

l + 1
, for n ∈ Z+ = N ∪ {0}.

(2.1)
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On the other hand, by (1.14) and (1.15), we get

I1 = (−1)n
∫

Zp

Bn(1 − x)dμ−1(x)

= (−1)n
n∑

l=0

(
n
l

)
Bn−l

∫

Zp

(1 − x)ldμ−1(x)

= (−1)n
n∑

l=0

(
n
l

)
Bn−l(−1)l Gl+1(−1)

l + 1

= (−1)n
n∑

l=0

(
n
l

)
Bn−l

(
2 +

Gl+1

l + 1
− 2δ1,l+1

)

= 2(−1)n(Bn + δ1,n) + (−1)n
n∑

l=0

(
n
l

)
Bn−l

Gl+1

l + 1
+ 2(−1)n+1Bn.

(2.2)

Equating (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, one has

(
1 + (−1)n+1

) n∑

l=0

(
n
l

)
Bn−l

Gl+1

l + 1
= 2(−1)nδ1,n. (2.3)

By using the reflection symmetric property for the Euler polynomials, we can also
obtain some interesting identities on the Euler numbers.

Now, we consider the fermionic p-adic integral on Zp for the polynomials as follows:

I2 =
∫

Zp

Gn(x)dμ−1(x)

=
n∑

l=0

(
n
l

)
Gn−l

∫

Zp

xldμ−1(x)

=
n∑

l=0

(
n
l

)
Gn−l

Gl+1

l + 1
, for n ∈ Z+.

(2.4)

On the other hand, by (1.8), (1.10), and (1.11), we get

I2 = (−1)n−1
∫

Zp

Gn(1 − x)dμ−1(x)

= (−1)n−1
n∑

l=0

(
n
l

)
Gn−l

∫

Zp

(1 − x)ldμ−1(x)

= (−1)n−1
n∑

l=0

(
n
l

)
Gn−l(−1)l Gl+1(−1)

l + 1
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= (−1)n−1
n∑

l=0

(
n
l

)
Gn−l

(
2 +

Gl+1

l + 1
− 2δ1,l+1

)

= 2(−1)n−1(2δ1,n −Gn) + 2(−1)nGn

+ (−1)n−1
n∑

l=0

(
n
l

)
Gn−l

Gl+1

l + 1
.

(2.5)

Equating (2.4) and (2.5), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

(
1 + (−1)n)

n∑

l=0

(
n
l

)
Gn−l

Gl+1

l + 1
= 4(−1)nGn + 4(−1)n+1δ1,n. (2.6)

Let us consider the fermionic p-adic integral on Zp for the product of Bn(x) and Gn(x)
as follows:

I3 =
∫

Zp

Bm(x)Gn(x)dμ−1(x)

=
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

∫

Zp

xk+ldμ−1(x)

=
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

Gk+l+1

k + l + 1
.

(2.7)

On the other hand, by (1.10) and (1.14), we get

I3 =
∫

Zp

Bm(x)Gn(x)dμ−1(x)

= (−1)n+m−1
∫

Zp

Bm(1 − x)Gn(1 − x)dμ−1(x)

= (−1)n+m−1
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

∫

Zp

(1 − x)k+ldμ−1(x)

= 2(−1)n+m−1Bm(1)Gn(1) + 2(−1)m+nBmGn

+ (−1)n+m−1
m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

Gk+l+1

k + l + 1
.

(2.8)
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By (2.7) and (2.8), we easily see that

(
1 + (−1)n+m+1

) m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−kGn−l

Gk+l+1

k + l + 1

= 2(−1)m+n−1(δ1,m + Bm)(2δ1,n −Gn) + 2(−1)m+nBmGn

= 4(−1)m+n−1Bmδ1,n + 2(−1)m+nBmGn + 4(−1)m+n−1δ1,mδ1,n

+ 2(−1)m+nδ1,mGn + 2(−1)m+nBmGn.

(2.9)

Therefore, by (2.9), we obtain the following theorem.

Theorem 2.3. For n,m ∈ Z+, one has

(
1 + (−1)n+m+1

) m∑

k=0

n∑

l=0

(
m
k

)(
n
l

)
Bm−k

Gn−l+1
n − l + 1

Gk+l+1

k + l + 1

= 4(−1)m+nBmGn + 4(−1)m+n−1Bmδ1,n + 4(−1)m+n−1δ1,mδ1,n

+ 2(−1)m+nδ1,mGn.

(2.10)

Corollary 2.4. For n,m ∈ N, one has

2m∑

k=0

2n∑

l=0

(
2m
k

)(
2n
l

)
B2m−kG2n−l

Gk+l+1

k + l + 1
= 2B2mG2n. (2.11)

Let us consider the fermionic p-adic integral on Zp for the product of the Bernoulli
polynomials and the Bernstein polynomials. For n, k ∈ Z+, with 0 ≤ k ≤ n, Bk,n(x) =
( n
k )x

k(1 − x)n−k are called the Bernstein polynomials of degree n, see [11]. It is easy to show
that Bk,n(x) = Bn−k,n(1 − x),

I4 =
∫

Zp

Bm(x)Bk,n(x)dμ−1(x)

=
(
n
k

) m∑

l=0

(
m
l

)
Bm−l

∫

Zp

xk+l(1 − x)n−kdμ−1(x)

=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jBm−l

∫

Zp

xk+l+jdμ−1(x)

=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jBm−l

Gk+l+j+1

k + l + j + 1
.

(2.12)
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On the other hand, by (1.14) and (2.12), we get

I4 = (−1)m
∫

Zp

Bm(1 − x)Bn−k,n(1 − x)dμ−1(x)

= (−1)m
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

∫

Zp

(1 − x)n−k+l+jdμ−1(x)

= (−1)m
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

×
(
2 − 2δ1,n−k+l+j+1 +

Gn−k+l+j+1
n − k + l + j + 1

)

= 2(−1)m
(
n
k

)
Bm(1)δ0,k + 2(−1)m+1

(
n
k

)
Bmδk,n

+ (−1)m
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.13)

Equating (2.12) and (2.13), we see that

m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jBm−l

Gk+l+j+1

k + l + j + 1

= 2(−1)mBm(1)δ0,k + 2(−1)m+1Bmδk,n

+ (−1)m
m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jBm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.14)

Thus, from (2.14), we obtain the following theorem.

Theorem 2.5. For n,m ∈ N, one has

2m∑

l=0

n∑

j=0

(
2m
l

)(
n
j

)
(−1)jB2m−l

Gl+j+1

l + j + 1
= 2B2m(1) +

2m∑

l=0

(
2m
l

)
B2m−l

Gn+l+1

n + l + 1
. (2.15)

Finally, we consider the fermionic p-adic integral on Zp for the product of the Euler
polynomials and the Bernstein polynomials as follows:

I5 =
∫

Zp

Gm(x)Bk,n(x)dμ−1(x)

=
(
n
k

) m∑

l=0

(
m
l

)
Gm−l

∫

Zp

xk+l(1 − x)n−kdμ−1(x)
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=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jGm−l

∫

Zp

xk+l+jdμ−1(x)

=
(
n
k

) m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jGm−l

Gk+l+j+1

k + l + j + 1
.

(2.16)

On the other hand, by (1.10) and (2.12), we get

I5 = (−1)m−1
∫

Zp

Gm(1 − x)Bn−k,n(1 − x)dμ−1(x)

= (−1)m−1
(
n
k

) m∑

l=0

(
m
l

)
Gm−l

k∑

j=0

(
k
j

)
(−1)j

∫

Zp

(1 − x)n−k+l+jdμ−1(x)

= (−1)m−1
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jGm−l

×
(
2 +

Gn−k+l+j+1
n − k + l + j + 1

− 2δ1,n−k+l+j+1
)

= 2(−1)m−1
(
n
k

)
Gm(1)δ0,k + 2(−1)m

(
n
k

)
Gmδk,n

+ (−1)m−1
(
n
k

) m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jGm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.17)

Equating (2.16) and (2.17), we obtain

m∑

l=0

n−k∑

j=0

(
m
l

)(
n − k
j

)
(−1)jGm−l

Gk+l+j+1

k + l + j + 1

= 2(−1)m−1Gm(1)δ0,k + 2(−1)mGmδk,n

+ (−1)m−1
m∑

l=0

k∑

j=0

(
m
l

)(
k
j

)
(−1)jGm−l

Gn−k+l+j+1
n − k + l + j + 1

.

(2.18)

Therefore, by (2.18), we obtain the following theorem.

Theorem 2.6. For n,m ∈ N, one has

2m∑

l=0

n∑

j=0

(
2m
l

)(
n
j

)
(−1)jG2m−l

Gl+j+1

l + j + 1
= −2G2m(1) −

2m∑

l=0

(
2m
l

)
G2m−l

Gn+l+1

n + l + 1
. (2.19)
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We develop methods for computing the product of several Bernoulli and Euler polynomials by
using Bernoulli basis for the vector space of polynomials of degree less than or equal to n.

1. Introduction

It is well known that, the nth Bernoulli and Euler numbers are defined by

n∑

l=0

(
n
l

)
Bl − Bn = δ1,n,

n∑

l=0

(
n
l

)
El + En = 2δ0,n, (1.1)

where B0 = E0 = 1 and δk,n is the Kronecker symbol (see [1–20]).
The Bernoulli and Euler polynomials are also defined by

Bn(x) =
n∑

l=0

(
n
l

)
Bn−lxl, En(x) =

n∑

l=0

(
n
l

)
En−lxl. (1.2)

Note that {B0(x), B1(1), . . . , Bn(x)} forms a basis for the space Pn = {p(x) ∈ Q[x] | deg p(x) ≤
n}.
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So, for a given p(x) ∈ Pn, we can write

p(x) =
n∑

k=0

akBk(x), (1.3)

(see [8–12]) for uniquely determined ak ∈ Q.
Further,

ak =
1
k!

{
p(k−1)(1) − p(k−1)(0)

}
, where p(k)(x) =

dkp(x)
dxk

,

a0 =
∫1

0
p(t)dt, where k = 1, 2, . . . , n.

(1.4)

Probably, {1, x, . . . , xn} is the most natural basis for the space Pn. But {B0(x), B1(x), . . . , Bn(x)}
is also a good basis for the space Pn, for our purpose of arithmetical and combinatorial
applications.

What are common to Bn(x), En(x), xn? A few proportion common to them are as
follows:

(i) they are all monic polynomials of degree n with rational coefficients;

(ii) (Bn(x))′ = nBn−1(x), (En(x))′ = nEn−1(x), (xn)′ = nxn−1;

(iii)
∫
Bn(x)dx = Bn+1(x)/(n+ 1) + c,

∫
En(x)dx = En+1(x)/(n+ 1) + c,

∫
xndx = xn+1/(n+

1) + c.

In [5, 6], Carlitz introduced the identities of the product of several Bernoulli polynomials:

Bm(x)Bn(x) =
∞∑

r=0

{(
m
2r

)
n +
(
n
2r

)
m

}
B2rBm+n−2r(x)
m + n − 2r + (−1)m+1

× m!n!
(m + n)!

Bm+n (m + n ≥ 2),

∫1

0
Bm(x)Bn(x)Bp(x)Bq(x)dx = (−1)m+n+p+q

∞∑

r,s=0

{(
m
2r

)
n +
(
n
2r

)
m

}{(
p
2s

)
q +
(
q
2s

)
p

}

× (m + n − 2r − 1)!(p + q − 2s − 1)!
(
m + n + p + q − 2r − 2s)! BrBsBm+n+p+q−2r−2

+ (−1)m+p m!n!
(m + n)!

p!q!
(
p + q

)
!
Bm+nBp+q.

(1.5)

In this paper, we will use (1.4) to derive the identities of the product of several Bernoulli and
Euler polynomials.
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2. The Product of Several Bernoulli and Euler Polynomials

Let us consider the following polynomials of degree n:

p(x) =
∑

i1+···+ir+j1+···+js=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x), (2.1)

where the sum runs over all nonnegative integers i1, . . . , ir , j1, . . . js satisfying i1 + · · ·+ ir + j1 +
· · · + js = n, r + s = 1, r, s ≥ 0.

Thus, from (2.1), we have

p(k)(x) = (n + r + s − 1)(n + r + s − 2) · · · (n + r + s − k)

×
∞∑

i1+···+ir+j1+···+js=n−k
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x).

(2.2)

For k = 1, 2, . . . , n, by (1.4), we get

ak =
1
k!

{
p(k−1)(1) − p(k−1)(0)

}

=
( n+r+s

k )
n + r + s

∑

i1+···+ir+j1+···+js=n−k+1

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs

}

=
( n+r+s

k )
n + r + s

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

×
∞∑

i1+···+ir+j1+···+js=n+a+1−k−r
Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=n−k+1
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.3)

From (2.3), we note that

an =
( n+r+s

n )
n + r + s

∑

i1+···+ir+j1+···+js=1

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs

}

=
( n+r+s

n )
n + r + s

{(
−1
2
+ 1
)
r −
(
−1
2

)
s −
(
−1
2

)
(r + s)

}

=
( n+r+s

n )
n + r + s

(r + s) =
(
n + r + s − 1

n

)
,
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an−1 =
1

n + r + s

(
n + r + s
n − 1

)

×
∑

i1+···+ir+j1+···+js=2

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs

}

=
1

n + r + s

(
n + r + s
n − 1

){
1
6
r +

1
2
1
2

(
r + s
2

)
− 1
6
r −
(
−1
2

)(
−1
2

)(
r + s
2

)}
= 0,

a0 =
∫1

0
p(t)dt

=
∞∑

i1+···+ir+j1+···+js=n

i1∑

l1=0

· · ·
ir∑

lr=0

j1∑

p1=0

· · ·
js∑

ps=0

(
i1
l1

)
· · ·
(
ir
lr

)(
j1
p1

)
· · ·
(
js
ps

)

× Bi1−l1 · · ·Bir−lr Ej1−p1Ejs−ps
l1 + · · · + lr + p1 + · · · + ps + 1

.

(2.4)

Therefore, by (1.3), (2.1), (2.3), and (2.4), we obtain the following theorem.

Theorem 2.1. For n ∈ N with n ≥ 2, we have

∑

i1+···+ir+j1+···+js=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

=
1

n + r + s

n−2∑

k=1

(
n + r + s

k

)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

∑

i1+···+ia+j1+···+jc=n+a+1−k−r
Bi1 · · ·BiaEj1 · · ·Ejc

−
∞∑

i1+···+ir+j1+···+js=n−k+1
Bi1 · · ·BirEk1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Bk(x) +
(
n + r + s − 1

n

)
Bn(x)

+
∑

i1+···+ir+j1+···+js=n

i1∑

l1=0

. . .
ir∑

lr=0

j1∑

p1=0

· · ·
js∑

ps=0

(
i1
l1

)
· · ·
(
ir
lr

)(
j1
p1

)
· · ·
(
js
ps

)

× Bi1−l1 · · ·Bir−lr Ej1−p1Ejs−ps
l1 + · · · + lr + p1 + · · · ps + 1

.

(2.5)
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Let us take the polynomial p(x) of degree n as follows:

p(x) =
∑

i1+···+ir+j1+···+js+t=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t, (2.6)

Then, from (2.6), we have

p(k)(x) = (n + r + s)(n + r + s − 1) · · · (n + r + s − k + 1)

×
∑

i1+···+ir+j1+···+js+t=n−k
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t,
(2.7)

By (1.4) and (2.7), we get, for k = 1, 2, . . . , n,

ak =
1
k!

{
p(k−1)(1) − p(k−1)(0)

}

=
1

n + r + s + 1

(
n + r + s + 1

k

)

×
∑

i1+···+ir+j1+···+js+t=n−k+1

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs0

t}

=

(
n+r+s+1

k

)

n + r + s + 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

×
n+a+1−k−r∑

t=0

∑

i1+···+ia+j1+···+jc=t
Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=n−k+1
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(2.8)

Now, we look at an and an−1.

an =

(
n+r+s+1

n

)

n + r + s + 1

∑

i1+···+ir+j1+···+js+t=1

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs0

t}

=

(
n+r+s+1

n

)

n + r + s + 1

{
1
2
(r + s) + 1 −

(
−1
2

)
(r + s)

}

=
r + s + 1

n + r + s + 1

(
n + r + s + 1

n

)
=
(
n + r + s

n

)
,
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an−1 =

(
n+r+s+1

n−1
)

n + r + s + 1

∑

i1+···+ir+j1+···+js+t=2

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs0

t}

=

(
n+r+s+1

n−1
)

n + r + s + 1

{
1
6
r + 1 +

1
2
1
2

(
r + s
2

)
+
1
2
(r + s) − 1

6
r −
(
−1
2

)(
−1
2

)(
r + s
2

)}

=
1

n + r + s + 1

(
n + r + s + 1

n − 1
)
r + s + 2

2
=

1
2

(
n + r + s
n − 1

)
,

(2.9)

From (2.6), we note that

a0 =
∫1

0
p(t)dt

=
∑

i1+···+ir+j1+···+js+t=n

i1∑

l1=0

· · ·
ir∑

lr=0

j1∑

p1=0

· · ·
js∑

ps=0

(
i1
l1

)
· · ·
(
ir
lr

)(
j1
p1

)
· · ·
(
js
ps

)

× Bi1−l1 · · ·Bir−lr Ej1−p1Ejs−ps
1

l1 + · · · + lr + p1 + · · · ps + t + 1
.

(2.10)

Therefore, by (1.3), (2.6), (2.8), (2.9), and (2.10), we obtain the following theorem.

Theorem 2.2. For n ∈ N with n ≥ 2, one has
∑

i1+···+ir+j1+···+js+t=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t

=
1

n + r + s + 1

n−2∑

k=1

(
n + r + s + 1

k

)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

n+a+1−k−r∑

t=0

∞∑

i1+···+ia+j1+···+jc=t
Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=n−k+1
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Bk(x)

+
1
2

(
n + r + s
n − 1

)
Bn−1(x) +

(
n + r + s

n

)
Bn(x)

+
∑

i1+···+ir+j1+···+js+t=n

i1∑

l1=0

· · ·
ir∑

lr=0

j1∑

p1=0

· · ·
js∑

ps=0

{(
i1
l1

)
· · ·
(
ir
lr

)(
j1
p1

)
· · ·
(
js
ps

)

× Bi1−l1 · · ·Bir−lr Ej1−p1 · · ·Ejs−ps

× 1
l1 + · · · + lr + p1 + · · · ps + t + 1

}
.

(2.11)
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Consider the following polynomial of degree n:

p(x) =
∞∑

i1+···+ir+j1+···+js=n

1
i1!i2! · · · ir !j1! · · · js!Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x). (2.12)

Then, from (2.12), one has

p(k)(x) = (r + s)k
∑

i1+···+ir+j1+···+js=n−k

Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)
i1!i2! · · · ir !j1! · · · js! . (2.13)

By (1.4) and (2.13), one gets, for k = 1, 2, . . . , n,

ak =
1
k!

{
p(k−1)(1) − p(k−1)(0)

}

=
(r + s)k−1

k!

∑

i1+···+ir+j1+···+js+t=n−k+1

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs

i1!i2! · · · ir !j1! · · · js!
}

=
(r + s)k−1

k!

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

∑

i1+···+ia+j1+···+jc=n+a+1−k−r

Bi1 · · ·BiaEj1 · · ·Ejc

i1!i2! · · · ia!j1! · · · jc!

−
∑

i1+···+ir+j1+···+js=n−k+1

1
i1!i2! · · · ir !j1! · · · js!Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.14)

Now look at an and an−1:

an =
(r + s)n−1

n!

∑

i1+···+ir+j1+···+js=1

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs

i1!i2! · · · ir !j1! · · · js!
}

=
(r + s)n−1

n!

{
1
2
(r + s) −

(
−1
2

)
(r + s)

}
=

(r + s)n

n!
,

an−1 =
(r + s)n−2

(n − 1)!
∑

i1+···+ir+j1+···+js=2

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs

i1!i2! · · · ir !j1! · · · js!
}

=
(r + s)n−2

(n − 1)!
{
1
2
1
6
r +

1
2
1
2

(
r + s
2

)
− 1
2
1
6
r −
(
1
2

)(
−1
2

)(
r + s
2

)}
= 0.

(2.15)
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It is easy to show that

a0 =
∫1

0
p(t)dt =

∑

i1+···+ir+j1+···+js=n

1
i1! · · · ir !j1! · · · js!

×
i1∑

l1=0

· · ·
ir∑

lr=0

j1∑

p1=0

· · ·
js∑

ps=0

{
Bi1−l1 · · ·Bir−lr Ej1−p1Ejs−ps
l1 + · · · + lr + p1 + · · · ps + 1

(
i1
l1

)
· · ·
(
ir
lr

)(
j1
p1

)
· · ·
(
js
ps

)}
.

(2.16)

Therefore, by (1.3), (2.14), and (2.15), one obtains the following theorem.

Theorem 2.3. For n ∈ N with n ≥ 2, one has

∑

i1+···+ir+j1+···+js=n

1
i1!i2! · · · ir !j1! · · · js!Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

=
n−2∑

k=1

(r + s)k−1

k!

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

×
∑

i1+···+ia+j1+···+jc=n+a+1−k−r

Bi1 · · ·BiaEj1 · · ·Ejc

i1!i2! · · · ia!j1! · · · jc!

−
∑

i1+···+ir+j1+···+js=n−k+1

1
i1!i2! · · · ir !j1! · · · js!

×Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Bk(x) +
(r + s)n

n!
Bn(x)

+
∑

i1+···+ir+j1+···+js=n

i1∑

l1=0

· · ·
ir∑

lr=0

j1∑

p1=0

· · ·
js∑

ps=0

(
i1
l1

)
· · ·
(
ir
lr

)(
j1
p1

)
· · ·
(
js
ps

)

× Bi1−l1 · · ·Bir−lr Ej1−p1Ejs−ps
i1!i2! · · · ir !j1! · · · js!

(
l1 + · · · + lr + p1 + · · · ps + 1

) .

(2.17)

Take the polynomial p(x) of degree n as follows:

p(x) =
∑

i1+···+ir+j1+···+js+t=n

1
i1!i2! · · · ir !j1! · · · js!t!Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t. (2.18)
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Then, from (2.18), one gets

p(k)(x) = (r + s + 1)k

×
∑

i1+···+ir+j1+···+js+t=n−k

1
i1!i2! · · · ir !j1! · · · js!t!Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t.
(2.19)

By (1.4) and (2.19), one gets, for k = 1, . . . , n,

ak =
1
k!

{
p(k−1)(1) − p(k−1)(0)

}

=
(r + s + 1)k−1

k!

∑

i1+···+ir+j1+···+js+t=n−k+1

1
i1!i2! · · · ir !j1! · · · js!t!

× {Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs0
t}

=
(r + s + 1)k−1

k!

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

n+a+1−k−r∑

t=0

1
(n + a + 1 − k − r − t)!

×
∑

i1+···+ia+j1+···+jc=t

1
i1!i2! · · · ia!j1! · · · jc!Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=n−k+1
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.20)

Now look at an and an−1:

an =
(r + s + 1)n−1

n!

∑

i1+···+ir+j1+···+js+t=1

1
i1!i2! · · · ir !j1! · · · js!t!

× {Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs0
t}

=
(r + s + 1)n−1

n!

{
1
2
(r + s) + 1 −

(
−1
2

)
(r + s)

}

=
(r + s + 1)n−1

n!
(r + s + 1) =

(r + s + 1)n

n!
,
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an−1 =
(r + s + 1)n−2

(n − 1)!
∑

i1+···+ir+j1+···+js+t=2

1
i1!i2! · · · ir !j1! · · · js!t!

× {Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) − Bi1 · · ·BirEj1 · · ·Ejs0
t}

=
(r + s + 1)n−2

(n − 1)!
{
1
2
1
6
r +

1
2
+
1
2
1
2

(
r + s
2

)
+
1
2
(r + s) − 1

2
1
6
r −
(
−1
2

)(
−1
2

)(
r + s
2

)}

=
(r + s + 1)n−2

(n − 1)!
r + s + 1

2

=
(r + s + 1)n−1

2(n − 1)! .

(2.21)

From (2.18), one can derive the following identity:

a0 =
∫1

0
p(t)dt

=
∑

i1+···+ir+j1+···+js+t=n

1
i1! · · · ir !j1! · · · js!t!

∫1

0
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

tdt

=
∑

i1+···+ir+j1+···+js+t=n

1
i1! · · · ir !j1! · · · js!t!

i1∑

l1=0

· · ·
ir∑

lr=0

j1∑

p1=0

· · ·

×
js∑

ps=0

(
i1
l1

)
· · ·
(
ir
lr

)(
j1
p1

)
· · ·
(
js
ps

)
Bi1−l1 · · ·Bir−lr Ej1−p1Ejs−ps

1
l1 + · · · + lr + p1 + · · · ps + t + 1

.

(2.22)

Therefore, by (1.3), (2.20), (2.21), and (2.22), one obtains the following theorem.

Theorem 2.4. For n ∈ N with n ≥ 2, one has
∑

i1+···+ir+j1+···+js+t=n

1
i1!i2! · · · ir !j1! · · · js!t!Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t

=
n−2∑

k=1

(r + s + 1)k−1

k!

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

k+r−n−1≤a≤r

(
r
a

)(
s
c

)
(−1)c2s−c

n+a+1−k−r∑

t=0

1
(n + a + 1 − k − r − t)!

×
∑

i1+···+ia+j1+···+jc=t

1
i1!i2! · · · ia!j1! · · · jc!Bi1 · · ·BiaEj1 · · ·Ejc

−
∑

i1+···+ir+j1+···+js=n−k+1

Bi1 · · ·BirEj1 · · ·Ejs

i1!i2! · · · ir !j1! · · · js!

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Bk(x)
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+
(r + s + 1)n−1

2(n − 1)! Bn−1(x) +
(r + s + 1)n

n!

∑

i1+···+ir+j1+···+js+t=n

i1∑

l1=0

· · ·
ir∑

lr=0

j1∑

p1=0

· · ·
js∑

ps=0

×

(
i1
l1

)
· · ·
(

ir
lr

)(
j1
p1

)
· · ·
(

js
ps

)

i1! · · · ir !j1! · · · js!t! Bi1−l1 · · ·Bir−lr Ej1−p1Ejs−ps
1

l1 + · · · + lr + p1 + · · · ps + t + 1
.

(2.23)
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Kim et al. (2012) introduced an interesting p-adic analogue of the Eulerian polynomials. They
studied some identities on the Eulerian polynomials in connection with the Genocchi, Euler, and
tangent numbers. In this paper, by applying the symmetry of the fermionic p-adic q-integral on Zp,
defined by Kim (2008), we show a symmetric relation between the q-extension of the alternating
sum of integer powers and the Eulerian polynomials.

1. Introduction

The Eulerian polynomialsAn(t), n = 0, 1, . . ., which can be defined by the generating function

1 − t
e(t−1)x − t =

∞∑

n=0

An(t)
xn

n!
, (1.1)

have numerous important applications in number theory, combinatorics, and numerical
analysis, among other areas. From (1.1), we note that

(A(t) + (t − 1))n − tAn(t) = (1 − t)δ0,n, (1.2)

where δn,k is the Kronecker symbol (see [1]). Thus far, few recurrences for the Eulerian
polynomials other than (1.2) have been reported in the literature. Other recurrences are of
importance as they might reveal new aspects and properties of the Eulerian polynomials,
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and they can help simplify the proofs of known properties. For more important properties,
see, for instance, [1] or [2].

Let p be a fixed odd prime number. Let Zp,Qp, and Cp be the ring of p-adic integers, the
field of p-adic numbers, and the completion of the algebraic closure of Qp, respectively. Let
| · |p be the p-adic valuation on Q, where |p|p = p−1. The extended valuation on Cp is denoted
by the same symbol | · |p. Let q be an indeterminate, where |1 − q|p < 1. Then, the q-number is
defined by

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

. (1.3)

For a uniformly (or strictly) differentiable function f : Zp → Cp (see [1, 3–6]), the
fermionic p-adic q-integral on Zp is defined by

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)
(−q)x. (1.4)

Then, it is easy to see that

1
q
I−1/q

(
f1
)
+ I−1/q

(
f
)
= [2]1/qf(0), (1.5)

where f1(x) = f(x + 1).
By using the same method as that described in [1], and applying (1.5) to f , where

f(x) = q(1−ω)xe−x(1+q)ωt (1.6)

for ω ∈ Z>0, we consider the generalized Eulerian polynomials on Zp by using the fermionic
p-adic q-integral on Zp as follows:

∫

Zp

q(1−ω)xe−x(1+q)ωtdμ−1/q(x) =
1 + q

q1−ωe−(1+q)ωt + q

=
∞∑

n=0

An

(−q,ω) t
n

n!
.

(1.7)

By expanding the Taylor series on the left-hand side of (1.7) and comparing the coefficients
of the terms tn/n!, we get

∫

Zp

q(1−ω)xxndμ−1/q(x) =
(−1)n

ωn
(
1 + q

)nAn

(−q,ω). (1.8)
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We note that, by substituting ω = 1 into (1.8),

An

(−q, 1) = An

(−q) = (−1)n(1 + q
)n
∫

Zp

xndμ−1/q(x) (1.9)

is the Witt’s formula for the Eulerian polynomials in [1, Theorem 1]. Recently, Kim et al. [1]
investigated new properties of the Eulerian polynomials An(−q) at q = 1 associated with the
Genocchi, Euler, and tangent numbers.

Let Tk,1/q(n) denote the q-extension of the alternating sum of integer powers, namely,

Tk,1/q(n) =
n∑

i=0
(−1)iikq−i = 0kq0 − 1kq−1 + · · · + (−1)nnkq−n, (1.10)

where 00 = 1. If q → 1, Tk,q(n) → Tk(n) =
∑n

i=0(−1)iik is the alternating sum of integer
powers (see [4]). In particular, we have

Tk,1/q(0) =
{
1, for k = 0,
0, for k > 0.

(1.11)

Let ω1, ω2 be any positive odd integers. Our main result of symmetry between the q-
extension of the alternating sum of integer powers and the Eulerian polynomials is given in
the following theorem, which is symmetric in ω1 and ω2.

Theorem 1.1. Let ω1, ω2 be any positive odd integers and n ≥ 0. Then, one has

n∑

i=0

(
n
i

)
Ai

(−q,ω1
)
Tn−i,q−ω2 (ω1 − 1)ωn−i

2

(−1 − q)n−i

=
n∑

i=0

(
n
i

)
Ai

(−q,ω2
)
Tn−i,q−ω1 (ω2 − 1)ωn−i

1

(−1 − q)n−i.
(1.12)

Observe that Theorem 1.1 can be obtained by the same method as that described in
[4]. If q = 1, Theorem 1.1 reduces to the form stated in the remark in [4, page 1275].

Using (1.11), if we take ω2 = 1 in Theorem 1.1, we obtain the following corollary.

Corollary 1.2. Let ω1 be any positive odd integer and n ≥ 0. Then, one has

An

(−q) =
n∑

i=0

(
n
i

)
Ai

(−q,ω1
)
Tn−i,q−1(ω1 − 1)

(−1 − q)n−i. (1.13)

2. Proof of Theorem 1.1

For the proof of Theorem 1.1, we will need the following two identities (see (2.4) and (2.5))
related to the Eulerian polynomials and the q-extension of the alternating sum of integer
powers.
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Let ω1, ω2 be any positive odd integers. From (1.7), we obtain

∫
Zp

q(1−ω1)xe−x(1+q)ω1tdμ−1/q(x)
∫
Zp

q(1−ω1ω2)xe−x(1+q)ω1ω2tdμ−1/q(x)
=

1 +
(
q−ω1e−(1+q)ω1t

)ω2

1 + q−ω1e−(1+q)ω1t
. (2.1)

This has an interesting p-adic analytic interpretation, which we shall discuss below (see
Remark 2.1). It is easy to see that the right-hand side of (2.1) can be written as

1 +
(
q−ω1e−(1+q)ω1t

)ω2

1 + q−ω1e−(1+q)ω1t
=

ω2−1∑

i=0
(−1)iq−ω1ie−(1+q)ω1ti

=
∞∑

k=0

(
ω2−1∑

i=0
(−1)iik(qω1

)−i
ωk

1 (−1)k
(
1 + q

)k
)

tk

k!
.

(2.2)

In (1.10), let q = qω1 . The left-hand, right-hand side, by definition, becomes

1 +
(
q−ω1e−(1+q)ω1t

)ω2

1 + q−ω1e−(1+q)ω1t
=
∞∑

k=0

(
Tk,q−ω1 (ω2 − 1)ωk

1 (−1)k
(
1 + q

)k) tk

k!
. (2.3)

A comparison of (2.1) and (2.3) yields the identity

∫
Zp

q(1−ω1)xe−x(1+q)ω1tdμ−1/q(x)
∫
Zp

q(1−ω1ω2)xe−x(1+q)ω1ω2tdμ−1/q(x)
=
∞∑

k=0

(
Tk,q−ω1 (ω2 − 1)ωk

1 (−1)k
(
1 + q

)k) tk

k!
. (2.4)

By slightly modifying the derivation of (2.4), we can obtain the following identity:

∫
Zp

q(1−ω2)xe−x(1+q)ω2tdμ−1/q(x)
∫
Zp

q(1−ω1ω2)xe−x(1+q)ω1ω2tdμ−1/q(x)
=
∞∑

k=0

(
Tk,q−ω2 (ω1 − 1)ωk

2 (−1)k
(
1 + q

)k) tk

k!
. (2.5)

Remark 2.1. The derivations of identities are based on the fermionic p-adic q-integral
expression of the generating function for the Eulerian polynomials in (1.7) and the quotient
of integrals in (2.4), (2.5) that can be expressed as the exponential generating function for the
q-extension of the alternating sum of integer powers.

Observe that similar identities related to the Eulerian polynomials and the q-extension
of the alternating sum of integer powers in (2.4) and (2.5) can be found, for instance, in [3,
(1.8)], [4, (21)], and [6, Theorem 4].
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Proof of Theorem 1.1. Let ω1, ω2 be any positive odd integers. Using the iterated fermionic p-
adic q-integral on Zp and (1.7), we have

∫ ∫
Zp

q(1−ω1)x1+(1−ω2)x2e−(1+q)(ω1x1+ω2x2)tdμ−1/q(x1)dμ−1/q(x2)
∫
Zp

q(1−ω1ω2)xe−x(1+q)ω1ω2tdμ−1/q(x)

= [2]1/q
q−ω1ω2e−(1+q)ω1ω2t + 1

(
q−ω1e−(1+q)ω1t + 1

)(
q−ω2e−(1+q)ω2t + 1

) .

(2.6)

Now, we put

I∗ =

∫ ∫
Zp

q(1−ω1)x1+(1−ω2)x2e−(1+q)(ω1x1+ω2x2)tdμ−1/q(x1)dμ−1/q(x2)
∫
Zp

q(1−ω1ω2)xe−x(1+q)ω1ω2tdμ−1/q(x)
. (2.7)

From (1.7) and (2.5), we see that

I∗ =

(∫

Zp

q(1−ω1)x1e−(1+q)(ω1x1)tdμ−1/q(x1)

)

×
⎛

⎝

∫
Zp

q(1−ω2)x2e−(1+q)(ω2x2)tdμ−1/q(x2)
∫
Zp

q(1−ω1ω2)xe−x(1+q)ω1ω2tdμ−1/q(x)

⎞

⎠

=

( ∞∑

k=0

Ak

(−q,ω1
) tk

k!

)

×
( ∞∑

l=0

(
Tl,q−ω2 (ω1 − 1)ωl

2(−1)l
(
1 + q

)l) tl

l!

)

=
∞∑

n=0

(
n∑

i=0
(−1)n−i

(
n
i

)
Ai

(−q,ω1
)
Tn−i,q−ω2 (ω1 − 1)ωn−i

2

(
1 + q

)n−i
)

tn

n!
.

(2.8)

On the other hand, from (1.7) and (2.4), we have

I∗ =

(∫

Zp

q(1−ω2)x2e−(1+q)(ω2x2)tdμ−1/q(x2)

)

×
⎛

⎝

∫
Zp

q(1−ω1)x1e−(1+q)(ω1x1)tdμ−1/q(x1)
∫
Zp

q(1−ω1ω2)xe−x(1+q)ω1ω2tdμ−1/q(x)

⎞

⎠

=

( ∞∑

k=0

Ak

(−q,ω2
) tk

k!

)

×
( ∞∑

l=0

(
Tl,q−ω1 (ω2 − 1)ωl

1(−1)l
(
1 + q

)l) tl

l!

)

=
∞∑

n=0

(
n∑

i=0
(−1)n−i

(
n
i

)
Ai

(−q,ω2
)
Tn−i,q−ω1 (ω2 − 1)ωn−i

1

(
1 + q

)n−i
)

tn

n!
.

(2.9)

By comparing the coefficients on both sides of (2.8) and (2.9), we obtain the result in
Theorem 1.1.
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3. Concluding Remarks

Note that many other interesting symmetric properties for the Euler, Genocchi, and tangent
numbers are derivable as corollaries of the results presented herein. For instance, considering
[1, (5)],

An(−1, ω) = (−2ω)nEn (n ≥ 0), (3.1)

where En denotes the nth Euler number defined by En := En(0), and the Euler polynomials
are defined by the generating function

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
, (3.2)

and on putting q = 1 in Theorem 1.1 and Corollary 1.2, we obtain

n∑

i=0

(
n
i

)
ωi

1EiTn−i(ω1 − 1)ωn−i
2 =

n∑

i=0

(
n
i

)
ωi

2EiTn−i(ω2 − 1)ωn−i
1 , (3.3)

En =
n∑

i=0

(
n
i

)
ωi

1EiTn−i(ω1 − 1). (3.4)

These formulae are valid for any positive odd integersω1, ω2. The Genocchi numbersGn may
be defined by the generating function

2t
et + 1

=
∞∑

n=0

Gn
tn

n!
, (3.5)

which have several combinatorial interpretations in terms of certain surjective maps on finite
sets. The well-known identity

Gn = 2(1 − 2n)Bn (3.6)

shows the relation between the Genocchi and the Bernoulli numbers. It follows from (3.6)
and the Staudt-Clausen theorem that the Genocchi numbers are integers. It is easy to see that

Gn = 2nE2n−1 (n ≥ 1), (3.7)

and from (3.2), (3.5) we deduce that

En(x) =
n∑

k=0

(
n
k

)
Gk+1

k + 1
xn−k. (3.8)



International Journal of Mathematics and Mathematical Sciences 7

It is well known that the tangent coefficients (or numbers) Tn, defined by

tan t =
∞∑

n=1

(−1)n−1T2n t2n−1

(2n − 1)! , (3.9)

are closely related to the Bernoulli numbers, that is, (see [1])

Tn = 2n(2n − 1)Bn

n
. (3.10)

Ramanujan ([7, page 5]) observed that 2n(2n−1)Bn/n and, therefore, the tangent coefficients,
are integers for n ≥ 1. From (3.3), (3.6), (3.7), and (3.10), the obtained symmetric formulae
involve the Bernoulli, Genocchi, and tangent numbers (see [1]).
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Let Vn = {p(x) ∈ Q[x]|deg p(x) ≤ n} be the (n + 1)-dimensional vector space over Q. We show
that {E0(x), E1(x), . . . , En(x)} is a good basis for the space Vn, for our purpose of arithmetical and
combinatorial applications. Thus, if p(x) ∈ Q[x] is of degree n, then p(x) =

∑n
l=0 blEl(x) for

some uniquely determined bl ∈ Q. In this paper we develop method for computing bl from the
information of p(x).

1. Introduction

The Euler polynomials, En(x), are given by

2
et + 1

ext = eE(x)t =
∞∑

n=0

En(x)
tn

n!
, (1.1)

(see [1–20]) with the usual convention about replacing En(x) by En(x). In the special case,
x = 0, En(0) = En are called the nth Euler numbers. The Bernoulli numbers are also defined
by

t

et − 1 = eBt =
∞∑

n=0

Bn
tn

n!
, (1.2)

(see [1–20]) with the usual convention about replacing Bn by Bn. As is well known, the
Bernoulli polynomials are given by

Bn(x) =
n∑

l=0

(
n
l

)
Blx

n−l =
n∑

l=0

(
n
l

)
Bn−lxl, (1.3)
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(see [9–15]) From (1.1), (1.2), and (1.3), we note that

Bn(1) − Bn = δ1,n, En(1) + En = 2δ0,n, (1.4)

where δk,n is the kronecker symbol.
Let m,n ∈ Z+ withm + n ≥ 2. The formula

Bm(x)Bn(x) =
∑

r

{(
m
2r

)
n +
(
n
2r

)
m

}
B2rBm+n−2r(x)
m + n − 2r + (−1)m+1m!n!Bm+n

(m + n)!
, (1.5)

is proved in [4–6]. Let Vn = {p(x) ∈ Q[x] | deg p(x) ≤ n} be the (n + 1)-dimensional
vector space over Q. Probably, {1, x, . . . , xn} is the most natural basis for this space. But
{E0(x), E1(x), . . . , En(x)} is also a good basis for the space Vn, for our purpose of arithmetical
and combinatorial applications. Thus, if p(x) ∈ Q[x] is of degree n, then

p(x) =
n∑

l=0

blEl(x), (1.6)

for some uniquely determined bl ∈ Q. Further,

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}
(k = 0, 1, 2, . . . , n), (1.7)

where p(k)(x) = dkp(x)/dxk. In this paper we develop methods for computing bl
from the information of p(x). Apply these results to arithmetically and combinatorially
interesting identities involvingE0(x), E1(x), . . . , En(x), B0(x), . . . , Bn(x). Finally, we give some
applications of those obtained identities.

2. Euler Basis, Identities, and Their Applications

Let us take p(x) the polynomial of degree n as follows:

p(x) =
n∑

k=0

Bk(x)Bn−k(x). (2.1)

From (2.1), we have

p(k)(x) =
(n + 1)!

(n − k + 1)!

n∑

l=k

Bl−k(x)Bn−l(x). (2.2)
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By (1.7) and (2.2), we get

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}

=
1
2

(
n + 1
k

) n∑

l=k

{(Bl−k + δ1,l−k)(Bn−l + δ1,n−l) + Bl−kBn−l},
(2.3)

Thus, we have

bk =
(
n + 1
k

)( n∑

l=k

Bl−kBn−l + Bn−k−1

)

, (0 ≤ k ≤ n − 3), (2.4)

bn−2 =
7
72

n
(
n2 − 1

)
, bn = n + 1, bn−1 = 0. (2.5)

By (1.6), (2.1), (2.3), and (2.4), we get

n∑

k=0

Bk(x)Bn−k(x)

=
n−3∑

k=0

(
n + 1
k

)( n∑

l=k

Bl−kBn−l + Bn−k−1

)

Ek(x) +
7
72

n
(
n2 − 1

)
En−2(x) + (n + 1)En(x).

(2.6)

Let us consider the following triple identities:

p(x) =
∑

r+s+t=n
Br(x)Bs(x)Bt(x) =

n∑

k=0

bkEk(x), (2.7)

where the sum runs over all r, s, t ∈ Z+ with r + s + t = n. Thus, by (2.7), we get

p(k)(x) = (n + 2)(n + 1)n(n − 1) · · · (n − k + 3)
∑

r+s+t=n−k
Br(x)Bs(x)Bt(x). (2.8)

From (1.7) and (2.8), we have

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}

=

(
n+2
k

)

2

∑

r+s+t=n−k
{Br(1)Bs(1)Bt(1) + BrBsBt}

=

(
n+2
k

)

2

{

2
∑

r+s+t=n−k
BrBsBt +

∑

r+s+t=n−k
δ1,rBsBt +

∑

r+s+t=n−k
Brδ1,sBt
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+
∑

r+s+t=n−k
BrBsδ1,t +

∑

r+s+t=n−k
δ1,rδ1,sBt +

∑

r+s+t=n−k
δ1,rBsδ1,t

+
∑

r+s+t=n−k
Brδ1,sδ1,t +

∑

r+s+t=n−k
δ1,rδ1,sδ1,t

}

.

(2.9)

Therefore, by (2.7) and (2.9), we obtain the following theorem.

Theorem 2.1. For r, s, t ∈ Z+, and n ∈ N with n ≥ 3, one has

∑

r+s+t=n
Br(x)Bs(x)Bt(x)

=
1
2

n−2∑

k=0

(
n + 2
k

){

2
∑

r+s+t=n−k
BrBsBt + 3

∑

r+s=n−k−1
BrBs + 3Bn−k−2 + δk,n−3

}

Ek(x)

+
(
n + 2
2

)
En(x).

(2.10)

Let us take the polynomial p(x) as follows:

p(x) =
∑

r+s+t=n
Br(x)Bs(x)Et(x). (2.11)

Then, by (2.11), we get

p(k)(x) = (n + 2)(n + 1)n(n − 1) · · · (n − k + 3)
∑

r+s+t=n−k
Br(x)Bs(x)Et(x). (2.12)

From (1.6), (1.7), and (2.12), we have

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}
=

(
n+2
k

)

2

∑

r+s+t=n−k
{Br(1)Bs(1)Et(1) + BrBsEt}

=

(
n+2
k

)

2

∑

r+s+t=n−k
{(Br + δ1,r)(Bs + δ1,s)(−Et + 2δ0,t) + BrBsEt}

=

(
n+2
k

)

2

{

−
∑

r+s+t=n−k
δ1,rBsEt −

∑

r+s+t=n−k
Brδ1,sEt + 2

∑

r+s+t=n−k
BrBsδ0,t

−
∑

r+s+t=n−k
δ1,rδ1,sEt + 2

∑

r+s+t=n−k
δ1,rBsδ0,t + 2

∑

r+s+t=n−k
Brδ1,sδ0,t

+2
∑

r+s+t=n−k
δ1,rδ1,sδ0,t

}

.

(2.13)
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Note that

bn−1 =
(
n + 2
n − 1

){

−
∑

s+t=0

BsEt −
∑

r+t=0

BrEt + 2
∑

r+s=1

BrBs − 0 + 2B0 + 2B0 + 2 · 0
}

=
1
2

(
n + 2
n − 1

)
{−1 − 1 + 2(B1 + B1) + 2 + 2} = 0.

(2.14)

Therefore, we obtain the following theorem.

Theorem 2.2. For n ∈ N with n ≥ 2, one has

∑

r+s+t=n
Br(x)Bs(x)Et(x)

=
1
2

n−2∑

k=0

(
n + 2
k

){

2
∑

r+s=n−k
BrBs − 2

∑

r+t=n−k−1
BrEt − En−k−2 + 4Bn−k−1 + 2δk,n−2

}

Ek(x)

+
(
n + 2
2

)
En(x).

(2.15)

Remark 2.3. By the same method, we obtain the following identities.
(I)

∑

r+s+t=n
Br(x)Es(x)Et(x)

=
1
2

n−2∑

k=0

(
n + 2
k

){

2
∑

r+s+t=n−k
BrEsEt +

∑

s+t=n−k−1
EsEt − 4

∑

r+s=n−k
BrEs + 4Bn−k − 4En−k−1

}

Ek(x)

+
(
n + 2
2

)
En(x).

(2.16)

(II)

∑

r+s+t=n
Er(x)Es(x)Et(x)

= 3
n−2∑

k=0

(
n + 2
k

){ ∑

r+s=n−k
ErEs − 2En−k

}

Ek(x) +
(
n + 2
2

)
En(x).

(2.17)

Let us consider the polynomial p(x) as follows:

p(x) =
∑

r+s+t=n
Br(x)Bs(x)xt. (2.18)
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Thus, by (2.18), we get

p(k)(x) = (n + 2)(n + 1)n(n − 1) · · · (n − k + 3)
∑

r+s+t=n−k
Br(x)Bs(x)xt. (2.19)

From (1.6), (1.7), (2.18), and (2.19), we have

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}
=

(
n+2
k

)

2

∑

r+s+t=n−k

{
Br(1)Bs(1) + BrBs0t

}

=

(
n+2
k

)

2

∑

r+s+t=n−k

{
(Br + δ1,r)(Bs + δ1,s) + BrBs0t

}

=

(
n+2
k

)

2

{
∑

r+s+t=n−k
BrBs +

∑

r+s+t=n−k
Brδ1,s +

∑

r+s+t=n−k
δ1,rBs +

∑

r+s+t=n−k
δ1,rδ1,s +

∑

r+s+t=n−k
BrBs0t

}

.

(2.20)

Here we note that

∑

r+s+t=n−k
BrBs =

n−k∑

t=0

∑

r+s=n−k−t
BrBs =

n−k∑

t=0

∑

r+s=t
BrBs

∑

r+s+t=n−k
Brδ1,s =

⎧
⎪⎨

⎪⎩

n−k−1∑

r=0
Br, if k ≤ n − 1,

0, if k = n,

∑

r+s+t=n−k
Bsδ1,r =

⎧
⎪⎨

⎪⎩

n−k−1∑

r=0
Br, if k ≤ n − 1,

0, if k = n,

∑

r+s+t=n−k
δ1,rδ1,s =

{
1, if k ≤ n − 2,
0, if k = n − 1 or n,

∑

r+s+t=n−k
BrBs0t =

∑

r+s=n−k
BrBs, ∀k.

(2.21)

It is easy to show that

bn−1 =
1
2

(
n + 2
n − 1

){ ∑

r+s=0

BrBs + 2
∑

r+s=1

BrBs + 2B0

}

=
1
2

(
n + 2
n − 1

)
{1 + 2(B1 + B2) + 2} = 1

2

(
n + 2
n − 1

)
.

(2.22)

Therefore, by (1.6), (2.18), (2.20), and (2.22), we obtain the following theorem.
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Theorem 2.4. For n ∈ N with n ≥ 2, one has

∑

r+s+t=n
Br(x)Bs(x)xt

=
1
2

n−2∑

k=0

(
n + 2
k

){n−k−1∑

t=0

∑

r+s=t
BrBs + 2

∑

r+s=n−k
BrBs + 2

n−k−1∑

r=0

Br + 1

}

Ek(x)

+
1
2

(
n + 2
n − 1

)
En−1(x) +

(
n + 2
n

)
En(x).

(2.23)

Remark 2.5. By the same method, we can derive the following identities.
(I)

∑

r+s+t=n
Br(x)Es(x)xt

=
1
2

n−2∑

k=0

(
n + 2
k

){

−
n−k−1∑

t=0

∑

r+s=t
BrEs −

n−k−1∑

s=0

Es + 2
n−k∑

r=0

Br + 2

}

Ek(x)

+
1
2

(
n + 2
n − 1

)
En−1(x) +

(
n + 2
n

)
En(x).

(2.24)

(II)

∑

r+s+t=n
Er(x)Es(x)xt

=
1
2

n−2∑

k=0

(
n + 2
k

){n−k−1∑

t=0

∑

r+s=t
ErEs + 2

∑

r+s=n−k
ErEs − 4

n−k∑

r=0

Er + 4

}

Ek(x)

+
1
2

(
n + 2
n − 1

)
En−1(x) +

(
n + 2
2

)
En(x).

(2.25)

Now we generalize the above consideration to the completely arbitrary case. Let

p(x) =
∑

i1+···+ir+j1+···+js=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x), (2.26)

where the sum runs over all nonnegative integers i1, i2, . . . , ir , j1, . . . , js satisfying i1 + i2 + · · · +
ir + j1 + · · · + js = n. From (2.26), we note that

p(k)(x) = (n + r + s − 1) · · · (n + r + s − k)
∑

i1+···+ir+j1+···+js=n−k
Bi1(x) · · ·Bir (x) × Ej1(x) · · ·Ejs(x).

(2.27)
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By (1.6), (1.7), (2.18), and (2.27), we get

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}

=
1
2

(
n + r + s − 1

k

) ∑

i1+···+ir+j1+···+js=n−k

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) + Bi1 · · ·BirEj1 · · ·Ejs

}

=
1
2

(
n + r + s − 1

k

)

×
∑

i1+···+ir+j1+···+js=n−k
{(Bi1 + δ1,i1) · · · (Bir + δ1,ir )

×(−Ej1 + 2δ0,j1
) · · · (−Ejs + 2δ0,js

)
+ Bi1 · · ·BirEj1 · · ·Ejs

}

=
1
2

(
n + r + s − 1

k

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

a≥k+r−n

(
r
a

)(
s
c

)
(−1)c2s−c ×

∑

i1+···+ia+j1+···+jc=n+a−k−r
Bi1 · · ·BiaEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=n−k
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.28)

Note that

bn =
1
2

(
n + r + s − 1

n

)
⎧
⎨

⎩

∑

0≤c≤s

(
s
c

)
(−1)c2s−c ×

∑

i1+···+ir+j1+···+jc=0
Bi1 · · ·BirEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=0
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎬

⎭

=
1
2

(
n + r + s − 1

n

)
(
(2 − 1)s + 1

)
=
(
n + r + s − 1

n

)
,

bn−1 =
1
2

(
n + r + s − 1

n − 1
)
⎧
⎪⎨

⎪⎩

∑

r−1≤a≤r
0≤c≤s

(
r
a

)(
s
c

)
(−1)c2s−c

×
∑

i1+···+ia+j1+···+jc=1+a−r
Bi1 · · ·BiaEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=1
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎬

⎪⎭
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=
1
2

(
n + r + s − 1

n − 1
){

r(2 − 1)s +
∑

0≤c≤s

(
s
c

)
(−1)c2s−c

[
−1
2
(r + c)

]
− 1
2
(r + s)

}

=
1
2

(
n + r + s − 1

n − 1
){

r − 1
2
r +

1
2
s − 1

2
r − 1

2
s

}
= 0.

(2.29)

Therefore, by (1.6), (2.28), and (2.29), we obtain the following theorem.

Theorem 2.6. For n ∈ N with n ≥ 2, one has

∑

i1+···+ir+j1+···+js=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)

=
1
2

n−2∑

k=0

(
n + r + s − 1

k

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

a≥k+r−n

(
r
a

)(
s
c

)
(−1)c2s−c

×
∑

i1+···+ia+j1+···+jc=n+a−k−r
Bi1 · · ·BiaEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=n−k
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Ek(x)

+
(
n + r + s − 1

n

)
En(x).

(2.30)

Let us consider the polynomial p(x) of degree n as

p(x) =
∑

t+i1+···+ir+j1+···+js=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t. (2.31)

Then, from (2.31), we have

p(k)(x) = (n + r + s)(n + r + s − 1) · · · (n + r + s − k + 1)

×
∑

i1+···+ir+j1+···+js+t=n−k
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t.
(2.32)
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By (1.7) and (2.32), we get

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}

=
1
2

(
n + r + s

k

) ∑

i1+···+ir+j1+···+js+t=n−k

{
Bi1(1) · · ·Bir (1)Ej1(1) · · ·Ejs(1) + Bi1 · · ·BirEj1 · · ·Ejs0

t}

=
1
2

(
n + r + s

k

)

×
∑

i1+···+ir+j1+···+js+t=n−k
{(Bi1 + δ1,i1) · · · (Bir + δ1,ir )

×(−Ej0 + 2δ0,j1
) · · · (−Ejs + 2δ1,js

)
+ Bi1 · · ·BirEj1 · · ·Ejs0

t}

(2.33)

From (2.33), we can derive the following equation:

bk =
1
2

(
n + r + s

k

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

a≥k+r−n

(
r
a

)(
s
c

)
(−1)c2s−c ×

n+a−k−r∑

t=0

∑

i1+···+ia+j1+···+jc=t
Bi1 · · ·BiaEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=n−k
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.34)

Observe now that

bn =
1
2

(
n + r + s

n

)
⎧
⎨

⎩

s∑

c=0

(
s
c

)
(−1)c2s−c ×

∑

i1+···+ir+j1+···+jc=0
Bi1 · · ·BirEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=0
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎬

⎭

=
1
2

(
n + r + s

n

)
[
(2 − 1)s + 1

]
=
(
n + r + s

n

)
,

(2.35)
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bn−1 =
1
2

(
n + r + s
n − 1

)
⎧
⎪⎨

⎪⎩

∑

r−1≤a≤r
0≤c≤s

(
r
a

)(
s
c

)
(−1)c2s−c ×

1+a−r∑

t=0

∑

i1+···+ia+j1+···+jc=t
Bi1 · · ·BiaEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=1
Bi1 · · ·Bir Ej1 · · ·Ejs

⎫
⎪⎬

⎪⎭

=
1
2

(
n + r + s
n − 1

){
r + 1 − 1

2
r +

1
2
s − 1

2
r − 1

2
s

}
=

1
2

(
n + r + s
n − 1

)
.

(2.36)

Therefore, by (1.6), (2.31), (2.34), (2.35), and (2.36), we obtain the following theorem.

Theorem 2.7. For n ∈ N with n ≥ 2, one has

∑

i1+···+ir+j1+···+js+t=n
Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x

t

=
1
2

n−2∑

k=0

(
n + r + s

k

)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

a≥k+r−n

(
r
a

)(
s
c

)
(−1)c2s−c

×
n+a−k−r∑

t=0

∑

i1+···+ia+j1+···+jc=t
Bi1 · · ·BiaEj1 · · ·Ejc

+
∑

i1+···+ir+j1+···+js=n−k
Bi1 · · ·BirEj1 · · ·Ejs

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Ek(x)

+
1
2

(
n + r + s
n − 1

)
En−1(x) +

(
n + r + s

n

)
En(x).

(2.37)

Let us consider the following polynomial of degree n.

p(x) =
∑

i1+···+ir+j1+···+js=n

1
i1! · · · ir !j1! · · · js!Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x). (2.38)

Thus, by (2.38), we get

p(k)(x) = (r + s)k
∑

i1+···+ir+j1+···+js=n−k

1
i1! · · · ir !j1! · · · js! × Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x). (2.39)
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From (1.7), we have

bk =
1
2k!

{
p(k)(1) + p(k)(0)

}

=
(r + s)k

2k!

∑

i1+···+ir+j1+···+js=n−k

1
i1! · · · ir !j1! · · · js!

× {Bi1(1) · · ·Bir (1) × Ej1(1) · · ·Ejs(1) + Bi1 · · ·BirEj1 · · ·Ejs

}

=
(r + s)k

2k!

∑

i1+···+ir+j1+···+js=n−k

1
i1! · · · ir !j1! · · · js!

× {(Bi1 + δ1,i1) · · · (Bir + δ1,ir ) ×
(−Ej1 + 2δ0,j1

) · · · (−Ejs + 2δ0,js
)
+ Bi1 · · ·BirEj1 · · ·Ejs

}
.

(2.40)

Thus, by (2.40), we get

bk =
(r + s)k

2k!

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

a≥k+r−n

(
r
a

)(
s
c

)
(−1)c2s−c ×

∑

i1+···+ia+j1+···+jc=n+a−k−r

Bi1 · · ·BiaEj1 · · ·Ejc

i1! · · · ia!j1! · · · jc!

+
∑

i1+···+ir+j1+···+js=n−k

Bi1 · · ·BirEj1 · · ·Ejs

i1! · · · ir !j1! · · · js!

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(2.41)

Now, we note that

bn =
(r + s)n

2n!

⎧
⎨

⎩

s∑

c=0

(
s
c

)
(−1)c2s−c

×
∑

i1+···+ir+j1+···+jc=0

Bi1 · · ·BirEj1 · · ·Ejc

i1! · · · ir !j1! · · · jc! +
∑

i1+···+ir+j1+···+js=0

Bi1 · · ·BirEj1 · · ·Ejs

i1! · · · ir !j1! · · · js!

⎫
⎬

⎭

=
(r + s)n

2n!
[
(2 − 1)s + 1

]
=

(r + s)n

n!
,
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bn−1 =
(r + s)n−1

2(n − 1)!

⎧
⎪⎨

⎪⎩

∑

r−1≤a≤r
0≤c≤s

(
r
a

)(
s
c

)
(−1)c2s−c

×
∑

i1+···+ia+j1+···+jc=1+a−r

Bi1 · · ·BiaEj1 · · ·Ejc

i1! · · · ia!j1! · · · jc! +
∑

i1+···+ir+j1+···+js=1

Bi1 · · ·BirEj1 · · ·Ejs

i1! · · · ir !j1! · · · js!

⎫
⎪⎬

⎪⎭

=
(r + s)n−1

2(n − 1)!

{

r(2 − 1)s +
s∑

c=0

(
s
c

)
(−1)c2s−c

[
−1
2
(r + c)

]
− 1
2
(r + s)

}

= 0.

(2.42)

Therefore, by (1.6), (2.38), (2.41), and (2.42), we obtain the following theorem.

Theorem 2.8. For n ∈ N with n ≥ 2, one has

∑

i1+···+ir+j1+···+js=n

Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)
i1! · · · ir !j1! · · · js!

=
1
2

n−2∑

k=0

(r + s)k

k!

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

a≥k+r−n

(
r
a

)(
s
c

)
(−1)c2s−c ×

∑

i1+···+ia+j1+···+jc=n+a−k−r

Bi1 · · ·BiaEj1 · · ·Ejc

i1! · · · ia!j1! · · · jc!

+
∑

i1+···+ir+j1+···+js=n−k

Bi1 · · ·BirEj1 · · ·Ejs

i1! · · · ir !j1! · · · js!

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Ek(x)

+
(r + s)n

n!
En(x).

(2.43)

By the same method, we can obtain the following identity:

∑

i1+···+ir+j1+···+js+t=n

Bi1(x) · · ·Bir (x)Ej1(x) · · ·Ejs(x)x
t

i1! · · · ir !j1! · · · js!t!

=
1
2

n−2∑

k=0

(r + s + 1)k

k!

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

0≤a≤r
0≤c≤s

a≥k+r−n

(
r
a

)(
s
c

)
(−1)c2s−c
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×
n+a−k−r∑

t=0

1
(n + a − k − r − t)!

∑

i1+···+ia+j1+···+jc=t

Bi1 · · ·BiaEj1 · · ·Ejc

i1! · · · ia!j1! · · · jc!

+
∑

i1+···+ir+j1+···+js=n−k

Bi1 · · ·BirEj1 · · ·Ejs

i1! · · · ir !j1! · · · js!

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Ek(x)

+
(r + s + 1)n−1

2(n − 1)! En−1(x) +
(r + s + 1)n

n!
En(x).

(2.44)
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Recently, some interesting and new identities are introduced in the work of Kim et al. (2012). From
these identities, we derive some new and interesting integral formulae for Bernoulli and Genocchi
polynomials.

1. Introduction

As it is well known, the Bernoulli polynomials are defined by generating functions as follows:

t

et − 1e
xt = eB(x)t =

∞∑

n=0

Bn(x)
tn

n!
(1.1)

(see [1–5]) with the usual convention about replacing Bn(x) by Bn(x). In the special case,
x = 0, Bn(0) = Bn are called the nth Bernoulli numbers.

The Genocchi polynomials are also defined by

2t
et + 1

ext = eG(x)t =
∞∑

n=0

Gn(x)
tn

n!
(1.2)

(see [1, 6–10])with the usual convention about replacing Gn(x) by Gn(x). In the special case,
x = 0, Gn(0) = Gn are called the nth Genocchi numbers.
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From (1.1), we note that

Bn(x) =
n∑

l=0

(
n
l

)
Blx

n−l (1.3)

(see [1–5]). Thus, by (1.3), we get

d

dx
Bn(x) = n

n−1∑

l=0

(
n − 1
l

)
Blx

n−1−l = nBn−1(x) (1.4)

(see [2]). From (1.2), we note that

Gn(x) =
n∑

l=0

(
n
l

)
Glx

n−l. (1.5)

From (1.5), we can derive the following equation:

d

dx
Gn(x) = n

n−1∑

l=0

(
n − 1
l

)
Glx

n−1−l = nGn−1(x). (1.6)

By the definition of Bernoulli and Genocchi numbers, we get the following recurrence
formulae:

B0 = 1, Bn(1) − Bn = δ1,n, G0 = 0, Gn(1) +Gn = 2δ1,n, (1.7)

where δn,k is the Kronecker symbol (see [2]). From (1.4), (1.6), and (1.7), we note that

∫1

0
Bn(x)dx =

δ0,n
n + 1

(n ≥ 0),
∫1

0
Gn(x)dx = −2Gn+1

n + 1
(n ≥ 1). (1.8)

From the identities of Bernoulli and Genocchi polynomials, we derive some new and
interesting integral formulae of an arithmetical nature on the Bernoulli and Genocchi
polynomials.
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2. Integral Formula of Bernoulli and Genocchi Polynomials

From (1.1) and (1.2), we note that

t

et − 1e
xt =

1
2

(
2text

et + 1

)
+
1
t

(
t

et − 1
)(

2text

et + 1

)

=
1
2

( ∞∑

n=0

Gn(x)
tn

n!

)

+
1
t

( ∞∑

l=0

Bl
tl

l!

)( ∞∑

m=0

Gm(x)
tm

m!

)

=
1
2

∞∑

n=0

Gn(x)
tn

n!
+
1
t

∞∑

n=0

n∑

l=0

(
n
l

)
Gl(x)Bn−l

tn

n!

=
1
2

∞∑

n=0

Gn(x)
tn

n!
+
∞∑

n=0

⎛

⎜⎜
⎝−

1
2
Gn(x) +

n+1∑

l=0
l /=n

(
n+1
l

)
Gl(x)Bn+1−l
n + 1

⎞

⎟⎟
⎠

tn

n!

=
∞∑

n=0

⎛

⎜⎜
⎝

n+1∑

l=0
l /=n

(
n + 1
l

)
Gl(x)Bn+1−l

n + 1

⎞

⎟⎟
⎠

tn

n!
.

(2.1)

By comparing the coefficients on the both sides of (2.1), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, one has

Bn(x) =
n+1∑

l=0 l /=n

(
n + 1
l

)
Gl(x)Bn+1−l

n + 1
. (2.2)

From (1.1) and (1.2), also notes that

2t
et + 1

ext =
1
t

(
2t
(
et − 1)

et + 1

)(
text

et − 1
)

=
1
t

(
2t − 2 2t

et + 1

)(
text

et − 1
)

=
1
t

(

2t − 2
∞∑

l=0

Gl
tl

l!

)( ∞∑

m=0

Bm(x)
tm

m!

)

=
1
t

(

−2
∞∑

l=1

Gl+1

l + 1
tl+1

l!

)( ∞∑

m=0

Bm(x)
tm

m!

)

=
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n=1

(

−2
n∑

l=1

(
n
l

)
Gl+1

l + 1
Bn−l(x)

)
tn

n!
.

(2.3)

By comparing the coefficients on the both sides of (2.3), we obtain the following theorem.
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Theorem 2.2. For n ∈ N, one has

Gn(x) = −2
n∑

l=1

(
n
l

)
Gl+1

l + 1
Bn−l(x). (2.4)

Let one take the definite integral from 0 to 1 on both sides of Theorem 2.1. For n ≥ 2,

0 = −2
n+1∑

l=1
l /=n

(
n + 1
l

)
Gl+1

l + 1
Bn+1−l
n + 1

= −BnG2 − 2
n∑

l=1
l /=n−1

(
n
l

)
Bn−lGl+2

(l + 1)(l + 2)
. (2.5)

Therefore, by (2.3), we obtain the following theorem.

Theorem 2.3. For n ∈ N with n ≥ 2, one has

Bn = 2
n∑

l=1
l /=n−1

(
n
l

)
Bn−lGl+2

(l + 1)(l + 2)
. (2.6)

3. p-Adic Integral on Zp Associated with Bernoulli and
Genocchi Numbers

Let p be a fixed odd prime number. Throughout this section, Zp, Qp, and Cp will denote the
ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic
closure of Qp, respectively. Let vp be the normalized exponential valuation of Cp with |p|p =
p−vp(p) = 1/p. Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈
UD(Zp), the bosonic p-adic integral on Zp is defined by

I
(
f
)
=
∫

Zp

f(x)dμ(x) = lim
N→∞

1
pN

pN−1∑

x=0

f(x) (3.1)

(see [2, 5, 11]). From (3.1), we can derive the following integral equation:

I
(
fn
)
= I
(
f
)
+

n−1∑

i=0

f ′(i) (n ∈ N), (3.2)

where fn(x) = f(x + n) and f ′(i) = ((df(x))/dx)|x=i (see [2]). Let us take f(y) = et(x+y). Then
we have

∫

Zp

et(x+y)dμ
(
y
)
=

t

et − 1e
xt =

∞∑

n=0

Bn(x)
tn

n!
(3.3)
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(see [2, 5]). From (3.3), we have

∫

Zp

(x + n)ndμ
(
y
)
= Bn(x),

∫

Zp

yndμ
(
y
)
= Bn (3.4)

(see [2, 5]). Thus, by (3.2) and (3.4), we get

∫

Zp

(x + n)mdμ(x) =
∫

Zp

xmdμ(x) +m
n−1∑

i=0

im−1, (3.5)

(see [2]). From (3.5), we have

Bm(n) − Bm = m
n−1∑

i=0

im−1 (n ∈ Z+) (3.6)

(see [2]). The fermionic p-adic integral on Zp is defined by Kim as follows [2, 8, 9]:

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

1
pN

pN−1∑

x=0

f(x)(−1)x. (3.7)

From (3.7), we obtain the following integral equation:

I−1
(
fn
)
= (−1)nI−1

(
f
)
+ 2

n−1∑

l=0

(−1)n−l−1f(l) (3.8)

(see [2]), where fn(x) = f(x + n). Thus, by (3.8), we have

∫

Zp

(x + n)mdμ−1(x) = (−1)n
∫

Zp

xmdμ−1(x) + 2
n−1∑

l=0

(−1)n−l−1lm (3.9)

(see [2]). Let us take f(y) = et(x+y). Then we have

t

∫

Zp

et(x+y)dμ−1
(
y
)
=

2text

et + 1
=
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n=0

Gn(x)
tn

n!
. (3.10)

From (3.10), we have

∫

Zp

(
x + y

)n
dμ−1

(
y
)
=

Gn+1(x)
n + 1

,

∫

Zp

yndμ−1
(
y
)
=

Gn+1

n + 1
. (3.11)
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Thus, by (3.9) and (3.11), we get

Gm+1(n)
m + 1

= (−1)n
(

Gn+1

n + 1
+ 2

n−1∑

l=0

(−1)l−1lm
)

. (3.12)

Let us consider the following p-adic integral on Zp:

K1 =
∫

Zp

Bn(x)dμ(x) =
n∑

l=0

(
n
l

)
Bn−l

∫

Zp

xldμ(x) =
n∑

l=0

(
n
l

)
Bn−lBl. (3.13)

From Theorem 2.1 and (3.13), one has

K1 =
n+1∑

k=0
k /=n

(
n + 1
k

)
Bn+1−k
n + 1
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k
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∫
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k /=n
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k
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k
l

)
Bn+1−kBlGk−l

n + 1
.

(3.14)

Therefore, by (3.13) and (3.14), we obtain the following theorem.

Theorem 3.1. For n ∈ Z+, one has

n∑

l=0

(
n
l

)
Bn−lBl =

n+1∑

k=0
k /=n

k∑

l=0

(
n + 1
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)(
k
l
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Bn+1−kBlGk−l

n + 1
. (3.15)

Now, one sets

K2 =
∫
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Bn(x)dμ−1(x) =
n∑

l=0

(
n
l

)
Bn−l

Gl+1

l + 1
. (3.16)

By Theorem 2.1, one gets

K2 =
n+1∑

k=0
k /=n

(
n + 1
k

)
Bn+1−k
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.

(3.17)

Therefore, by (3.16) and (3.17), we obtain the following theorem.
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Theorem 3.2. For n ∈ Z+, one has
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n
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)(
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. (3.18)

Let us consider the following p-adic integral on Zp:

K3 =
∫

Zp

Gn(x)dμ−1(x) =
n∑

l=0

(
n
l

)
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(
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)
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. (3.19)

From Theorem 2.2, one has

K3 = −2
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(
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(l + 1)(k + 1)
.

(3.20)

Therefore, by (3.19) and (3.20), we obtain the following theorem.

Theorem 3.3. For n ∈ Z+, one has

n∑

l=0

(
n
l

)
Gn−lGl+1

l + 1
= −2
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k=0

(
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)
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. (3.21)

Now, one sets

K4 =
∫

Zp

Gn(x)dμ(x) =
n∑

l=0

(
n
l

)
Gn−lBl. (3.22)

By Theorem 2.2, one gets

K4 = −2
n∑

l=1

n−l∑

k=0

(
n
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)(
n − l
k

)
Gl+1

l + 1
Bn−l−kBk. (3.23)

Therefore, by (3.22) and (3.23), we obtain the following corollary.

Corollary 3.4. For n ∈ Z+, one has

n∑
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(
n
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. (3.24)
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