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G. Sburlati

GENERALIZED FIBONACCI SEQUENCES AND LINEAR
RECURRENCES

Abstract. We analyze the existing relations among particular classes of generalized Fi-
bonacci sequences, with characteristic polynomial having two integer roots. Several exam-
ples are given. Some properties concerning in general linear recurrences are also shown.

1. Introduction

There exists a very wide literature about the generalized Fibonacci sequences: one can
see about it refs. [2], where also interesting applications to number theory are shown,
and [1], where such sequences are treated as a particular case of a more general class
of sequences of numbers. In this paper, after a brief introduction to the generalized
Fibonacci sequences, we study the properties of some sequences whose characteristic
polynomial has two different integers as roots, giving several examples for clarifying
the theoretical results. Denoting by {U,, (h, k)},en (Where k1, k € Z, k(h? — 4k) # 0)
the linear recursive sequence with characteristic polynomial x> — hx + k, in particu-
lar we find interesting relations among the sequences {U,(c — a, —ca)},eN, {Un(c +
a, ca)lnen and (U, (c? +a?, c?a®)},en (Where a, ¢ € Nanda < ¢) and we also see a
difference between the role played in this context by the terms U, (¢ + a, *ca), n €
N U {0} and the role played by the terms Up,+1(c & a, £ca), n € N U {0}. Then
we show a connection between the sequences {U,(c + a, ca)},en and the sequences
{Un(c' + a’, c"a")},en for generic ¢t € N.

Finally, we review some classical properties of the class of linear recurrences,
which includes the class of the generalized Fibonacci sequences.

2. Generalized Fibonacci sequences

For each pair (%, k), h, k € C of complex numbers such that k(h*> — 4k) # 0, we
denote by {U, (h, k)},en the generalized Fibonacci sequence defined as follows:

Vn € N) n Z 2) Un(h) k) = hUn—](h) k) - kUn—Z(ha k))
Uo(h, k) =0, Uy(h, k) = 1.
An explicit expression of the nth term of {U,, (A, k)},.en for generic n € NU {0}

an — pn h+ ATk
——— an

is given by the Binet formula U, (h, k) = W, where o = >

 h—R 4k
2

d
are the distinct roots of the polynomial x> — hx + k € C[x],

p =
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called characteristic polynomial of the sequence. Some examples of these sequences,
corresponding to fixed values of 4 and %, are:

(Un(5, 2 nen .0, 1,5, 23, 105, 479, 2185, 9967, ...
(U, (4, —12)} yen 20, 1, 4, 28, 160, 976, 5824, 35008, ...
2 1 2 1 10 71 19 791
Un PR : 0) 1> 52 o’ AA’  AAA’ Aor’ zoan’
3 2) 37 18 277 324° 486" 5832
(Un(i, 2)hnen D0, 1,4, =3, —5i, 11, 21i, —43, ...

({Un(W2 4+ V3, VOlpen : 0, 1, V243, 5+ 6, 5(v2+/3),
19 4+ 5v6, 19(v2 + +/3), 65+ 196, ...

PROPOSITION 1. For generic h, k, 5 € C with dk(h* — 4k) # 0, we have
Vn e NU{0}, U,(0h, 6*k) = 0"~'U,(h, k).

Proof. We first observe that, 4, k, J being fixed, we have (0h)? — 4(5%k) = 6*(h* —
4k) # 0. Then we can consider the generalized Fibonacci sequence {U,, (6%, 6%k)},eN.
Clearly the assertion of the proposition holds when » = 0, 1. Now for generic m €
N,m > 2 let us suppose that it holds when » = m — 1, m — 2; we assert that it
is satisfied even when n = m. Indeed from the definition of generalized Fibonacci
sequence we have:

Un(Sh, 8°k) = 6hUp_1(6h, 6*k) — 6°k Upp—2(h, 5°k)
= Sh(0"2Up_1(h, k) — k(" S Up_a(h, k)
= " Y hUu_1(h, k) — kUp_2(h, k)
= U, (h, k).

The proposition is then proven by induction. O

COROLLARY 1. For generic h, k € R such that k(h* — 4k) # 0, we have
vn e NU{0Y, U,(ih, —k) = i"" U, (h, k).

Now let us suppose we are given z, w € C with zw(z? — 4w) # 0 and w/z? €
R. Letusset h = |z|, k = w|z|*/z% and 6 = z/|z|. Then h, k € R, ok(h? — 4k) # 0
and from Proposition 1 we deduce that Vn € NU {0}, U,(0h, 6*k) = 0"~ 'U,(h, k),
ie. that Va € NU{0}, U,(z, w) = (z/|z])""'U,(h, k). This implies that Vn e
NU {0}, |U,(z, w)| = |U,(h, k)|. Moreover, we can write Vn € N U {0},

U, (z, w) = Uy(h, K)[cos((n — Darg(z)) + i sin((n — 1arg(z))].
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3. The sequences {U,(c — a, —ca)},en and {U,(c + a, ca)},en (c,a €N, a < ¢)

Let two positive integers a, ¢ be fixed with @ < ¢, and let us consider the general-

ized Fibonacci sequences {U,(c — a, —ca)}nen, {(Un(c + a, ca)}pen and {U,(c? +
a*, c*a*)}pen. By using the Binet formulas for the terms of the first and the third

sequence, we can easily obtain:

2n _ . 2n 1 2n _ (_ \2n
Yn e NU{0), Up(P +d?, Pa?) = 5 = c” —(=a)
ce—a

c—a c+a

1

(1)

Uy, (c —a, —ca).

By using the Binet formulas for the terms of the second and the third of the same
Fibonacci sequences, we obtain:

cZn _ a2n 1 cZn _ a2n

Vn e NU{0), Uy (e + a2, Pd?) =

2 —a? c+a c—a

) = Upn(c + a, ca).

c+a
From equalities (1) and (2) we can also deduce that

Uxi(c —a, —ca)  Uylc+a, ca)

El

c—a ct+a
then (¢ + a)Uy,(c —a, —ca) — (¢ — a)Uz,(c + a, ca) = 0.

EXAMPLE 1. Let us take ¢ = 5, a = 2 and consider the three following se-
quences:

(Un(3, =100} ey : 0, 1, 3, 19, 87, 451, 2223, 11179, 55767, ...
(U(7, 100} ,en 20, 1,7, 39, 203, 1031, 5187, 25999, 130123, ...
(Un(29, 100)} ey : 0, 1,29, 741, 18589, 464981, 11625549, 290642821, ...

We verify equalities (1) and (2) forn = 1, 2, 3, 4: 3U;(29, 100) =3 -1 =3 =
U3, —10); 3U,(29, 100) = 3 .29 = 87 = Us(3, —10); 3U3(29, 100) = 3 -
741 = 2223 = Ug(3, —10); 3U4(29, 100) = 3 - 18589 = 55767 = Ug(3, —10);
7U1(29, 100) = 7-1 =17 = Uy(7, 10); 7U»(29, 100) = 7 -29 = 203 = Us(7, 10);
7U3(29, 100) = 7-741 = 5187 = Ug(7, 10); 7U4(29, 100) = 7-18589 = 130123 =
Ug(7, 10). From such equalities we immediately deduce, for n = 1, 2, 3, 4, that
70>, (3, —10) — 3U»,(7, 10) = 0.
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For generic a fixed in N, by posing ¢ = a + 1 in equalities (1) we deduce that:
Yn e NU(0}, Upla® + (a+ 1%, [ata + DI*) = Uzn(1, —ala + 1)).

EXAMPLE 2. Let us take a = 2, ¢ = 3 and consider the two following se-
quences:

(U,(1, =6)heny 20, 1, 1, 7, 13, 55, 133, 463, 1261, ...

{U,(13, 36)},eny @ 0, 1, 13, 133, 1261, 11605, 105469, 953317, ...

We can clearly see that U;(13, 36) = U, (1, —6), U»(13, 36) = Uys(1, —6), U3(13, 36) =
Us(1, —6) and Us(13, 36) = Us(1, —6).

Supposing once more a, ¢ fixed in N with a < ¢, the following equalities are verified:
Vn e NU {0}, (¢ + a)Uz41(c — a, —ca) — (¢ — a)Uyp41(c + a, ca)

62n+1 _ (_a)2n+l cZn-H _ a2n+l

=l+a) c+a —-a c

(CZn-H + a2n+1) _ (CZn-H _ a2n+1) — 2a2n+1.

—da

We summarize in the following theorem two important results obtained in this section.

THEOREM 1. Let a, ¢ € N be assigned with a < c. Then for all n € N U {0}
we have:
(c+a)Uy,(c —a, —ca) — (c —a)Uy,(c+a, ca)=0

and

(c+a)Uyt1(c —a, —ca) — (¢ — a)Uzyy41(c + a, ca) = 2a°"1.

The second part of Theorem 1 gives rise to the following corollary.

COROLLARY 2. Letc € N, ¢ > 2 be fixed. We have (c+1)Usp41(c—1, —c)—
(c — DUspy1{c+ 1, ¢) = 2 for all n € NU {0} (in fact these equalities hold even
when ¢ = 1). Moreover, if ¢ > 3 and we fix a € N with2 < a < ¢, we have
Jim e+ a)Uanti(c —a, —ca) = (¢ = a)Uzn1(c +a, ca)] = +o0.

The following fact is verified: when 2 < a < ¢, for all even n we have (¢ +
a)Uy(c —a, —ca) — (¢ — a)U,(c + a, ca) = 0, while the terms of the succession of
the numbers in the form (¢ + a)U,{(c — a, —ca) — (¢ — a)U,(c + a, ca) with n odd
tend to infinity as n — +oo: they actually grow exponentially with respect to 7.

EXAMPLE 3. By taking once more ¢ = 5 and a = 2, we verify the second part
of Theorem 1 for n = 0, 1, 2, 3. We have: 7U;(3, —10) — 3U(7, 10) = 7-1 —
3-1=4=2-21 7033, —=10) = 3U3(7, 10) = 7-19—-3-39 = 16 = 2 - 23;
7Us(3, —10) — 3Us(7, 10) = 7-451 —3-1031 = 64 = 2-25; 7U;(3, —10) —
3U7(7, 10) =7 - 11179 — 3-25999 = 256 =2 - 27.
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EXAMPLE 4. Let us fix ¢ = 6, a = 1 and consider the two following se-
quences:

{Un(5, —6)}en :0, 1,5, 31, 185, 1111, 6665, 39991, 239945, ...

(Ua(7, 6)lnen 20, 1, 7, 43, 259, 1555, 9331, 55987, 335923, ...

We have: 7Ui (5, —6) — SU(7, 6) =7-1 =51 = 2; TU>(5, —6) — 5Us(7, 6) =
7.5-5.7=0;7Us(5, —=6) — 5U3(7, 6) = 7-31 — 543 = 2; TUs(5, —6) —
5UL(7, 6) =7-185—5-259 = 0; 7Us(5, —6) — 5Us(7, 6) = 7-1111 = 5-1555 = 2;
TUs(5, —6) — 5Us(7, 6) = 7- 6665 — 59331 = 0; TU(5, —6) — 5U+(7, 6) =
7.39991 — 555987 = 2; TUs(5, —6) — 5Us(7, 6) = 7-239945 — 5 - 335923 = 0.

EXAMPLE 5. Let us fix ¢ = 5, a = 3 and consider the two following se-
quences:

{Un(2, =15)}nen : 0, 1, 2, 19, 68, 421, 1862, 10039, 48008, ...

{Un(8, 15)},en 10, 1, 8, 49, 272, 1441, 7448, 37969, 192032, ...

c—iz_aUn(c—a, —ca) — %Un(c—i—
a, ca). We obtain: 4U1(2, —15) —U1(8, 15) =4 -1 -1 =3 =31, 40,(2, —15) —
Upy(8,15) = 4.2—-8 = 0; 4U5(2, —15) — Us(8,15) = 419 — 49 = 27 =
33; 4U4(2, —15) — Us(8, 15) = 4 - 68 — 272 = 0; 4Us(2, —15) — Us(8, 15) =
4.421 — 1441 = 243 = 35 4Ug(2, —15) — Us(8, 15) = 4 - 1862 — 7448 = 0;
4U7(2, —15) — U7(8, 15) = 4 - 10039 — 37969 = 2187 = 37; 4Ug(2, —15) —
Ug(8, 15) = 448008 — 192032 = 0.

Now forn =1, 2, ..., 8 we calculate the value

4. Relation between {U,(c + a, ca)}pen and {U,(c" + a', c'a)}pen (c, a, t
N, a <¢)

m

Letusfix a, ¢, t € Nwitha < c¢. Then by applying Binet formulas to the terms of the
sequences {U,(c + a, ca)},en and {U,(c' + a', c'a'},eN, we can write:
cin — gin (ctn _ atn)/(c —a)
d—al (¢t —a")/(c—a)
U (c+a, ca)
- Uilc+a, ca)

Vn e NU{0), U,(c' +d', c'a") =

EXAMPLE 6. Letus takea = 1, ¢ = 2, t = 3 and consider the two following
sequences:

{Us3, Dlpen 1 0, 1,3, 7, 15, 31, 63, 127, 255, 511, ...

(Un(9, 8)lnen 1 0, 1,9, 73, 585, 4681, 37449, 299593, 2396745, ...

We have U3 (3, 2) =7 = TU;(9, 8), Us(3, 2) = 63 = 7TU»(9, 8), Uy(3, 2) = 511 =
7U3(9, 8), and so on.
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5. Linear recurrences

Let £ € N be fixed; for generic c;, ¢, ..., cx € C with ¢ # 0, let us set p(x) =
xk —epxk=l —epxk=2 — . — ¢4 € Clx]. Let p € C,t € N be given such that
(x — B)!|p(x). Then the following proposition holds.

=2
PROPOSITION 2. If'we pose, for everyn € N, 4, = H(n — i):| B (where

i=0
the empty product is posed equal to 1), then for alln € N, n > k the equality A4, =
c1Apn—1+ c2An—2 + ... + ck An— is satisfied.

Proof. For each fixed n > k, let us consider the polynomial f(x) = x"*p(x) =
x" —eix" V= ex" 2 — . — qx"% e C[x]. Since (x — B)!|f(x), f is a root of
7= (x), and then

1=2 k )
|:H(n _ l):| ﬁn—(t—l) — ch |:H(n —j- l):| ﬁn—j—(t—l).
i=0 j=l1 i=0

By multiplying the two members of the latter equality by !, we obtain

=2 k 12
[H(n — i)] pr=2c; [H(n —j- i)] B,
i=0 j=1 i=0

k
ie. An:ZCjAn—j' O
j=1
THEOREM 2. Ifk, ¢, ¢3, ..., Ck, p(X), B, t are given as above and we pose,
foreveryn € N, B, = n'"' ", then for alln > k we have B, = ¢1B,_1 + c2B,_2 +
e+ By,

Proof. When t = 1 or 2 the theorem is clearly equivalent to Proposition 2. Now after
fixing t € N, ¢ > 3 let us suppose the theorem to hold for any positive integer lower

=2
than ¢, and let us deduce its validity for the integer . We can set ¢;(x) = H(x —i)=
i=0
7y g/(x) € Clx], with deg(g,(x)) = ¢ — 2. For each fixedn € N, n > k, from
k
Proposition 2 we obtain the equality g, (n) " = Zc iqi(n— j B e,

j=1

k
3) ('~ @I =D eilin— N +n = 1B
j=1

An evaluation version of novaPDFE was used to create this PDF file.
Purchase a license to generate PDF files without this notice.


http://www.novapdf.com/

Fibonacci sequences and recurrences 377

Since deg(g,(x)) = ¢t — 2 and we have supposed that the theorem holds for all integers
lower than ¢, the equality

k
) gmp" = cign— "~

j=1

is easily verified to be satisfied. Finally, from equalities (3) and (4) we obtain

k
n’_lﬁ” — Zc](n _ j)t_],gn_],
j=1
k
which means B,, = Zc i B, ;. The theorem is then proven by induction over ¢. [
j=I

From Theorem 2 one immediately derives the following classical result [3] on

linear recurrences.

COROLLARY 3. Letk, ci, ¢3, ..., Ck, p(x) be assigned as above. Let us pose
p(x) = (x — 1) (x — B)2...(x — Bs)'s with 1, B2, ..., Bs distinct complex numbers,
t, b, ... ts € Nand t| + t5 + ... + ty = k. Then the set of the sequences {By},eN
which satisfy for every n > k the equality B, = c1By—1 + c2Bn—2 + ... + ckBy—k is
exactly the set of the sequences

tH—1 n—1 ts—1

n— Zaun] AL+ Zaz,jn] A+ + Zas,j”] B,
=0 =0 =0

where all numbers a; ; with1 < i < sand0 < j < t; — 1 are complex constants
independent of n.

The following example shows another well known result [3], which is a partic-
ular case of Corollary 3.

EXAMPLE 7. Let us take a generic § € C\{0} and consider the sequence
{B,(f)}nen defined as follows:

VneN, n=>2, Bn(ﬁ) = zﬁBn—l(ﬁ) - ﬁan—Z(ﬁ)>

Bo(p) =0, Bi(f) = 1.

This is not a generalized Fibonacci sequence, because for # = 2/ and k = 2 we have
h?>—4k = 0. By posingk =2, ¢; =2f, ¢ = —fi%, p(x) =x*>—cix —cz = (x — f)?
and using the notations of Corollary 3 we obtains = 1, ¢ = 2, f; = f. It can easily
be verified by induction that V#n € N U {0}, B,(8) = nf"~!. This result is consistent
with Corollary 3 and can also be obtained in the following way: for all a, f € C
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with & # £, let us consider the generalized Fibonacci sequence {U,, (o + S, o)} en:

we have Up(a + B, aff) = 0, Ui(a + B, aff) = land Vun > 2, U,(a + f, aff)) =

(o +HUp—1(a + B, off) — afU,—2(a + B, aff). From the Binet formulas we clearly
n__ pn

have Vn € NU {0}, U,(a + B, aff) = %. From the definition of {B,(#)},eN,
for each fixed n € N U {0} we can say that the term B, (/) is the limit for « — f
of the number (considered as a function of &) U, (a0 + f, o), and then the following
equalities hold:

a — p
o

n
B = lim U,(a + B, af) = lim =np" L.
) = lim Uyl + , ap) = lim © =20 = np
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