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ON FABER POLYNOMIALS.*

By Issar ScHUR.!

I. Introduction.? Let
o0
(1) f(r)=z2z4a+a/z4a/2*+ - =22 az?=129(1/2), a,—1
=0

be a power series concerning the convergence of which no assumption is made.?

* Received November 8, 1943; Revised February 4, 1944.

1 Died January 10, 1941, in Tel Aviv, Palestine. The Einstein Institute of Mathe-
matics of the Hebrew University, Jerusalem, has undertaken the complete edition of
the posthumous papers of the deceased, its honorary member since 1940. As the
realization of this project under present conditions requires considerable time, some
of the main results of this scientific legacy will be published in preliminary notes.
The present note has been elaborated by Dr. M. Schiffer of the Hebrew University who
worked over the notes left on the subject in cooperation with Professor M. Fekete, the
general editor of the scientific legacy of the great scholar. The manuscript has been
revised in this country.

? Grunsky gave necessary and sufficient conditions for the coefficients of a function
in order that it be meromorphic and univalent in a given domain D. (“ Koeffizienten-
abschétzungen fiir schlicht abbildende meromorphe Funktionen,” Mathematische Zeit-
schrift, vol. 45 (1939), pp. 29-61). If, in particular, D is the exterior of the unit circle,
these conditions take the form

m 0
(i) | 2 ucpvm#xvlgzu]wvlz, (m=1,2,...),
Hyy=1 r=1

where the ¢, are defined by the formula (2) of this paper, if the function considered
has the form (1). The identity L is proved by Grunsky with the aid of
Cauchy’s residue theorem. The late Professor Schur wanted to bring the conditions
(i) into a more easily evaluable form and investigated, therefore, the relations between
the coefficients @, and the c¢,,. This paper gives the results he obtained. Another
paper, caused by the same problem, dealing with the transformation of quadratic forms
to principal axes will appear elsewhere.

3 In the formal algebra of power series, two series are called equal if corresponding

[0.8)
coefficients are identical. We define the sum of P(x) =2kvxv (@ > — ) and
0 © e
P* (@) =2 k*,xv to be the series P(x) 4 P*(w) = 2 (ky, + k*,)av and the product
v=a r=a
© . v-a . . .
P(x)P*(x) to be 2 lav with lvzzkpk*v-p' Finally P(«)~ is the power series
=20 p=a
o0
which satisfies P(«x)P(a)-1=1, aud the derivative P’(x) of P(x) is > vk, av-1,

r=a

33
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34 ISSAI SCHUR.
We define a polynomial Pn(f) in f(z) of degree m (m =1,2,- - -) such that
() Pum(f) =2"+cm/2+4ome/2*+- -t omp/2* 4+ - - =2" + Gu(1/2),

o0
Gn () = 2 Cmp2*.
u=1

Pu(f) is called the m-th Faber polynomial of f(z). The existence and unique-
ness of P, (f) for m = 1 is easily shown by recursion.

Let
(3) Q) =g+ 2"+ gm+¢/2
be any polynomial in f(z) of degree m. Then, writing Po(f) =1,
D(f) = Q) — ¢oPu(f) — @:Pua(f) — - - —quPo(f) = a/z 4~ -

is a polynomial in f(z) the development of which with respect to 2z contains
only negative powers. This being evidently impossible unless D(f) is identi-
cally zero, we have the development

(3) Q) = qoPu(f) + G:Lua(f) +- - - 4 quPo(f).
Letting

[28)
() 9(@)" = S anmyar (m=1,2," ), amo—1
":

and writing ¢ = 1/z we have

f(z)m=2zmg(x)™ = 2™ + @m:2™ " + Auo2™ 2 4 - -+ Qmm + Gmma /2

whence, according to (3) and (3"),

(3) f(&)™="Pulf) + amPus(f) + -+ ammaPr(f) + amnPo(f).

Let ¢u(z) =1 + amz + - - - + awmz™ and ¢u(z) = Gmmaz + - - -
+ @mmna” 4 - - -, Then f(2)" = 2"¢m(2) + ym(x) and therefore, by (2)
and (5),

(6) Y (@) = Gu(2) 4 a1 Gna (2) 4 - -+ amma G ().

This important identitv establishes a relation between the coefficients cu
defined in (2) and the ay, defined in (4). In fact, comparing coefficients of
like powers of z, we have forv =1, m =1,

(7) Am,m+v == Cmv + Am1Cm-1,v + @m2Cm-2,v + cot + Um,m-1C1v.
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ON FABER POLYNOMIALS. 35

In order to combine all these formulas in one, we introduce the infinite
matrices

q (1 0 O0---
G 1 0 - - -
as2 Q3 1 - - -

L-

falz al3 ...

4

= (ap,“u_v), ay,o == ], a}"_k = 0 fOl' k ; 1,

€11 Cpz2 " "

Uog * * °
N = (appwv), C= | cn € "~ = (cpv).

Agq Qg5 * ° °

Then (7) can be expressed in the equivalent forms
) B=4C, C=A4"1B.

With the aid of (7’) we shall give an ezplicit formula for the cu in terms of
the coefficients av of f(z). We shall see that each cy, is a polynomial in the ay
with non-negative integer coefficients, and that vcyy = pevy (Grunsky’s
identity). This can also be shown by other arguments * but we shall calculate
the coefficients of these polynomials explicitly, and shall see in particular that
Grunsky’s formula is an expression of a corresponding symmetry property of
the polynomial coefficients.

II. Computation of the elements of the matrix C. We define, in con-
formity with (4),

o0
(4) g(z)"”=2°a4m_,mﬂ, (m=1,2,- ), ¢mo=1.
l‘:

In particular, we have in a., = pu the well-known Aleph-functions of
Wronski. In order to establish relations between the a.mu and the a.u, we
make use of the following simple lemma:

00
LEMMA. Let g(z) = X ava® be an arbitrary power series. Then
=0

[9(2)* —2¢'(2) g ()] =0

where [u(x)]x denotes the coefficient of a* in the development of u(z) in
powers of z.

¢ The integral character of the coefficients follows immediately by induction from
(7) since i) L (by (1) and (4)) is a polynomial in a, with integral coefficients
for m=1, n=0; ii) ¢, =a,, for v=1hy (1) and (2).
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36 ISSAI SCHUR.

The truth of the lemma is evident since

9@ = Saprr and og'(2)g(2) = 3 (p/)aspa%.

We apply the lemma with ¥ = u-—v, p and v (v < p) being arbitrary positive
integers, and obtain

0= [g(ayer g’ (@)g ()T = (g2 (- — Y]

= [({,i;f—)l” (g(x;),,), :’u—v [g(x) 2 (A Fv)ay m:)‘] .

v+ 2

Hence

(9) Ay p-v + -

1
Ay, py-1lov,y

L e o :ﬁ @y,pv =0,

which, by (8) and (4), yields

(10) 47 = (E a_wv) . =0 for k=1.

14

From (7) and (10) we obtain the formula

& p
(11) Cuy =}§1 3, GA NI
as a starting point for further calculations.
We begin by computing a_, u = py, for which we obtain the well-known
formula

gt ray A a3+'..+a !
(12) po— S pymee e (B L0,

(224 20+ - - pan = ).
o8
Differentiating the identity ¢(z)* = X puz# A —1 times with respect to a,

. a#au

1=0

we have
L(A—1) oMt My
(13) (—1))\1W—=u-oaa1)‘lxu
Hence by (4")
1 0>\—1 _
e A= (=D 7y T
and so by (1)
(15) a = 2 (_ 1))\—1+a1+ T
RN ay+2a9+ . . . +(p-1) Qpog=p—1
o o4 . e _ ) !
>< ( laj_! af !_%_ .. ap‘?lu!l (A’ a—l 1) a1a1-(1\_1)a204 P a#_laﬂ_l.
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ON FABER POLYNOMIALS. 37

The m-th Faber polynomial P*,(f*) of f*(z) =f(2) 4+ ¢ is evidently
connected with the m-th Faber polynomial Pn(f) of f(2) by the relation
P#,(f*) = Pu(f* —c¢) which, since P,,',(f* —¢) = Pin(f), shows that the
matrices C associated according to (2) and (8) with f(2) and f*(z) are the
same and thus do not depend on a,. For our final aim, to compute the elements
cuy 0of O, we may, therefore, assume henceforth that @; = 0. The coefficients
which correspond to this assumption will be denoted au‘®.

From (15) (with a, = 0) we have

T S P
(16) a_()‘\’,)ﬂ_)\=2(_.1)a2 Ggte e e tay o (A_1)121| : .a;—‘)\! a5 .az‘:i)\

(22 + -+ (p— N aur=p—2).
Also :

0 Al
avy a>(\,;2+>\‘=2()\_,82_[;3_. Y1 BBs - - Bun!
B+ -+ (n+ M) Bra=p+A).

Introducing (16) and (17) into (11) we get

a232a3ﬁ3 CEI a‘ﬂ‘it;\)\

1 (A—1 4 a) Las%az® - - - adu

18) cw= /X —1)e e
(18)  cu E(”/ )A:E,\( ) A—Dlaxlag!: - -ap!

)\[azﬁzasﬁs- . -a)l?i\;u

XB:%W(A'_B) ',82',83' : "Bz\w!

where the abbreviations & = @, 4 a3 + - 4 apn, B=082+ Bs + - - - -+ Brwv;
A =204 3a 4 (p—A)ar, B=2Ba+ 3B+ 4 (A1) B
have been introduced. From (18) we see that cy, has degree [$(n 4 v)] (at
most) and weight u 4+ .v.

Let

(usv) e g TR
(19) Cuv =I‘Z Oy« . vuw 0272057 Ousy”s
=p+v

y=vb by T=2b o (e )y

We have now to compute the integers O§§‘§‘;’,,,7#+V. From (18) and (19)
we obtain

M=

(20)  Oytar . oy =

( 1)a ()\_'1'%_“)'
iy 2l el A=y + )

>

() ()= g s e (AT (1) (
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38 ISSAI SCHUR.

Taking into consideration that in (20) the summation indices A, %2,* * +, 2uw
are always connected by the equation A = u— 4, we may transform it into
the form

() py—1)!
(*1) O'Y’:’YI;-H'YMW v lysl

“Yuev !

N Y2\ [ Vs Y \r—1—A4+a
— 1)@ C
2o ()0) =)
where the summation is to be extended over all non-negative integer values

of a;, the symbol (Z) being defined in the usual way for v = » and as 0 for

u < v even if u is negative. Thus we have to calculate only the expressions

@) 08 =s 0 (2) (1) () (700 ).

Since (with our convention concerni‘ng(iﬁ)) the expression (’u —l—4+ a)

y—1
vanishes unless pw— A4 4 o =1y, that is unless p—y =0, + a3+ - -
+ (p+v—1)auw, we see that ap = ap.w =" - - = au,y =0, and so we have

w s vafrY. v M—l—A-l-a)
@) D=2 0 () () ("I

where «; again takes only non-negative integer values and

O=0y -} ag -+ A, A=2Ra 4 3o+ - -+ (p + v)ape.

III. The explicit formula for ¢pv. The expression (23) can be summed
successively with the aid of the following lemma.

Lemma.  Let m and n be antegers, m =1, n=0. Let b™ =0 for
k>n(m—1) or k<0, and let b be defined for 0 =k =n(m—1) by

___aym\n n(m-1)
(24) (1 e ) =" pm g,

11—z k=0

(Thus b(m is a non-negative integer for m =1, n =0, and k arbitrary).
. . . U .
Then (assuming the above convention concernlng( 'v)) we have for arbitrary

positive integers h and r the identities
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ON FARER POLYNOMIALS. 39
. h4+n—14r—my (m)( —147r—p
(25) 2( b’ ( )( h+n—1 ) Eb h—1

((25) is trivially true for & > 0, r = 0).
We have (by the binomial theorem)

. h4+n—1+p
(26) (L — @) = F( h4n—1 )
whence

en  [U=E] =% o () (T )

) h+n-—1-4r—my
_2(__1) ( )( h+4n-—1 )
On the other hand, by (24),

! (1_xm)n:| [n(m 1)(m) h—1 +0 a]
(28) x)hnv np 6_0 h—1 z -
=y h—140o h—1-4r-—
. (m) (m) i P
= E bmp ( h—l ) - Ozbn,ﬂ ( )

pro=r h—1

Comparing (27) and (28) we obtain (25).
In the case & =0, n > 0, combination of (24) with (27) yields the
additional equality

o v ne—14r—mrY
(29) e I G B3
To carry out the summation in (23) we apply (R5) and (29). ILet
vi (2 =7 = p+v) be the last non-vanishing term in y,, - -
then by (23) and (29) (and the convention about (b))
2 —1— .
(30) DY =T (0= () (" ) = W

yo—1

T Yhave Tt 7* ~s

I j=3weseta—ag+ 4 aj, d=38as+ -+ ja, y =y +- -+ v
and obtain

o0 D 2 0r(2) 0 (2)

s (@) )
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40 ISSAI SCHUR.

The inner sum can be evaluated by applying (25) with v=1a,, n =1y,, h =79,
m=1, r=p—y—A+a We obtain

(32) (_1)% (Y”)( 1_—-5+3—a2)=§b—(y:,)p (#—72—P_~-1—1I+

2 7+ —1 y—1

and thus from (23) and (31)
(33) Dy = B0 DA,
p

Now if j = 4 we separate all terms in D {#==-p)  which contain a; and apply
’Ya: e YUy .
(25) with v = a;, n = v;, and m = 2, obtaining

(34) Dot oy = 3 Drulbag DO
2903

We continue in this way and at each step the dependence of D(#) vy 01 B
further b{#1) is expressed. Finally we consider D& "w-x'ﬁz— -=p-0), Let
pW=p—ys——  —yja—pr—" " pja. Then by (23) and (29) (with
aj=v, n="1yj, r=p —yj, m=7j—1) we have

. 4 —_— —_— ; —— .
(35) D(ﬂ) -.'Vu+y=2 (_1)@,] (y?)(/"‘ 1 (.7 1)“!) br(y]’;)'y-p,.-..,

@j yi—1
Hence if j = 3
(36) D’(Yls‘) < Yury =p 2 0 b’g’;’)Pz b’()’i)ﬁs ’ b"gf-12»)17!~1b’(yjl—’;)')’ P2~ . ~Pj-1 ®
UK i1
Since b(m =0 for k>0 and b(™ =1 for k=0, we may write (30) and
36) in the common form (valid for each admissible set of the v;’s
Vi
() (2) -

(37) D’YI; e Yuer T 2 b’sil‘*’)l)zh’}’ipa T b’()’ll:z:;)uﬂl 5 P2 + pP3 + T -4{_ Pp+y == . — 7.

In particular we see by (19), (21), (22) and (87) that the ¢y, are polynomials
m a,,ds, -+ - with non-negative integer coefficients.
An elegant expression can be given to (387) in the following way. By
the definition of the ™) we have
1—aoM\m X
(3=20)"- £ s
: a0
and so

+ A-1

ll 4 — ’Y\ _ 2 b(l) b(2) R (u+v-1)

1 = = YarP2 ¥ VarP3 Vi Pusy
K=Y P23+« PU+Y

Hence we have the following
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ON FABER POLYNOMIALS. 41

THEOREM. Let y =y, + vs+ - = - =+ ypwo T = 2y 4+ 3ys 4+ - - -
+ (,lL —|— V) Yu+ve Then
. —1)! ”“’ z— zM\v
(39) oo 5 AUZDE T2 8NN g oz,
=p+1 +

where [+ - -],L denotes the p-th coefficient of = in the expansion of the ex-
pression in the bracket.

Grunsky’s law of symmetry, namely that vcy = pevu, may be derived
immediately from (38). For
(7 _ ]) ! D(Il)

(u,v)
VO'Yz~ C Yy ‘LWY') 1. .. ‘)’u+v' Yoo Vusy

and
(7—1) ! D»(y:)

O(Vyﬂ)
e v2lo oy !

ae e Yy = Y cvu®

Therefore, we have only to prove that

o [, -LEER)D.

Now the expression

(40) () = {1 (l—f”x ) it gat e, n=3 A—2n

satisfies the equation 2"q(1/z) = q(z) which yields g¢u.s=¢s. Since
n=T—Ry = (p-—vy) + (v—y) we thus have qu., = ¢y, which is equiva-
lent to (39).
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