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1. Introduction 
 

Sparked by ideas in [1 and 3], we consider some properties of second-order generalizations of 

the Fibonacci and Lucas numbers defined by 
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where βα , are the roots of 
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are the Lucas fundamental numbers [7] and Horadam’s well–known generalization of the 

Fibonacci numbers [5].  Trivially then 
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but there are also some less obvious properties.  Some numerical examples are tabulated later 

in Section 4 of this paper. 

 

 

2. Recurrence Relations 
 

The elements of the sequence { })1( +k

nf satisfy the second order recurrence relation 
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in which kv is the ordinary generalized Lucas primordial sequence [7]. 

Proof: 
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as required.  Similarly, it may be shown that )1(

1

+
−
k

ng satisfies the recurrence relation which has 

(1.3) as an auxiliary equation, namely, 
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It then follows that the ordinary generating functions are given (formally) by 

 

2
0

)1(

1
1

1

xqxv
xf

k

kn

nk

n +−
=∑

∞

=

+
+  

 

(2.3)

and 

( )
2

0

)1(

1
1

1

qxpx

xvu
xg kk

n

nk

n +−
−+

=∑
∞

=

+
+  

 

(2.4)

Proof of (2.3):   
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so that from (1.2) 

( ) ( )
( )

.1

1

)(1

22

)1(

0

)1(

1

)1(

0

2

=









+−

−
−

+=

−+=+− +++

x

xvfffxfxqxv

kk
kk

k

kkkk

k

βα
βα
βα

 

Proof of (2.4): 

Let 

∑
∞

=

+
+=

0

)1(

1)(
n

nk

n xgxg  

so that from (1.2) 

( ) ( )
( )

( ) .1

1

)(1

11

)1(

0

)1(

1

)1(

0

2

xvu

x

xpgggxgqxpx

kk

kk
kk

kkk

−+=









−−

−
−

+=

−+=+−
++

+++

βα
βα
βα

 

 

 

3.  Lucas Primordial Sequence Connections 
 

As an analogue of Simson’s identity we have, not surprisingly, that 
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Proof: 

The numerator of the left hand side reduces to 
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which is .nq times the denominator of the left hand side, as required. 

 

When p = -q = P say, we are able to relate the )1( +k

nf to the ordinary Lucas fundamental 

numbers nu by means of a generalization of a result of Barakat [2] for the ordinary Lucas 

numbers. Barakat proved that 
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We now define 



14 

22

11

βα
βα

−
−

=

=

++ nn

n

n
P

u
x

 

and set 1+= nn xy  for later notational convenience, so that from Simson’s identity 

k

kkkk Puuuu )(11 −=− +−  

we have 
2

11 )( −
−− −=− k

kkkk Pyxyx . (3.2)

 

From this we can establish a connection with the Lucas primordial numbers, namely 
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We are now in a position to assert a property which relates these generalized Fibonacci 

numbers to the ordinary Fibonacci numbers, and, at the same time, yields an iterative formula 

for the general term [9]. This formula generalizes [2] and [8] and uses a result from [4]. 
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(from (3.3))

(from (3.2))
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So, on equating coefficients of z
n
 we find that 
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as required.

For example, when k =1, since ,0)2(
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which agrees with the result due to Barakat above. 

 

 

4.  Concluding Comments 
 

Other properties can be readily developed to relate these generalizations to other parts of 

Fibonacci and Lucas theory.  For instance, we can prove that 
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in which 
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defined in the context of this paper by: 
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as required.

 

The nth Fermatian of index x is defined formally by [Whitney] 
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Other arbitrary order generalizations of the Fibonacci and Lucas numbers have been produced 

by various alterations to the characteristic equations [4]. We conclude with the following table 

of the first seven values of some of the sequences discussed in this paper. 

 

 

n 0 1 2 3 4 5 6 … 
)2(

nf  1 1 2 3 5 8 13 … 

)3(

nf  1 3 8 21 55 144 377 … 

)4(

nf  1 3 13 55 233 987 4181 … 

)2(

ng  1 1 2 3 5 8 13 … 

)3(

ng  1 2 3 5 8 13 21 … 

)4(

ng  1 1½ 2½ 4 6½ 10½ 17 … 
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