GENERALIZED PELL NUMBERS AND POLYNOMIALS

A.G. Shannon and A.F. Horadam

1. INTRODUCTION

We define sequences of generalized Pell numbers with the notation introduced by Horadam
[6]
{Prn} ={Pra(1,27;,27,-1)} (1.1)

and by the second order recurrence relation
Pon=2"Ppn 1+ Py n>2 (1.2)
with initial conditions P,y = 1, P2 = 27, (though we can allow for n < 0). For instance,
{Pon(1,1;1, -1} = {Fn}, (1.3)
{PLa(L, 22, -1} = {Pa}, (L4)
the ordinary Fibonacci and Pell sequences respectively. We also define an allied sequence
{Qrn} = {Prn (@, 2" + 3,27, -1)}, (1.5)

so that
{QO,R(I: 31, —1} = {Ln}7 (1'6)

the ordinary Lucas numbers. Note that Prg = 0,Q,¢ = 27 +2—2%" if we extend the definition
ton =0.
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It is the intention of this paper to explore the number theoretic and combinatorial prop-
erties of these numbers and related polynomials p,(z) and p,,(z) defined below in (3.2) and
(3.5). Further, it is shown that any polynomial can be expressed in terms of related generalized
Pell polynomials.

The {P} arose in [9] in the combinatorial matrix defined by

Sp,g(n;2) = [8i,5(n)]nxn (1.7)

where

i—1\ ... .
sij(n) = (‘; 3 i)p"’""‘lq"”‘, (1.8)
and

Sé",—lszr,—l = S?"’H,—lar Z O) (19)

where
Sge,1=Sor 1 E (1.10)

in which F is the unit matrix with rows reversed, that is, the elementary (self-inverse) matrix

E = [eijlnxn

{ lifj=n—i+1
€=
I 0 otherwise.

An example of (1.9) when r = 1 is

1 000 000 1 00 0 1

6 1 0 0 001 6} _ 6 0 1 12 (1.11)
12 4 1 0 01 4 12 0 1 8 48 )

8 4 2 1 1 2 4 8 1 4 16 64

The falling (from left to right) diagonal sums, starting at the bottom, in the § matrices
(when considered as infinite in extent) are generalized Pell numbers {F,,}. For instance, in
(1.11) we have {1,2,5,12,...}, the ordinary Pell numbers, on the left, and {1,4,17,72,...}
on the right, which is {P ,}.

2. GENERAL TERMS

The auxiliary equation associated with the recurrence relation (1.2) is given by

M —2"A-1=0 (2.1)



GENERALIZED PELL NUMBERS AND POLYNOMIALS 215

which has roots given by

2T+ A 2 — A .
a=—F—, and 8 = 7 @)
in which
A=a—fF=/(4+27). (ii)
We note that
a+f=2", af = -1 (i)

The Binet forms of the general terms are

an _ £i3 .
P,= Aﬂ , (iv)

Qr,n = o + ﬁn- (V)

Using (i)-(v), we then get identities analogous to the well-known results for Fibonacci,
Pell and Lucas numbers:

Qr,n = Irn—1 + Pr,n+17 (2'2)

Pron = Pr,nQr,n’ (23)

A2P~r,n = Qr,n+1 + Qr,n—l; (24)
Pr,n+1Pr,n—1 - Prz,n = ('_1)": (25)
Qr,n+1Qr,n-—1 = (_1)n—1A2- (26)

Since the proofs are trivial, they will be omitted.
Combining (2.2) and (2.4), we may introduce the concept of interrelated associated se-
quences.

Definition: P,(';) and Q%, the k** associated sequences of Py, and Q. respectively, are
defined by

k-1 k—1

PR = %0 4 pTY), (2.7)
kw1 k—1

Q" =% N+, (2.8)

with P9 = P, ., Q) = Q,.. so that

Pvg,lrz = Qr,n by (2'2)3 (29)



216 A.G. Shannon and A.F. Horadam

Q) = AP, by (24).

Some leisurely substitutions using (2.2) and (2.4) lead readily to the conclusions that

Pf()?ﬂm) — Azmpr,n: Pr(,2nm+1) — AzmQr,n,
QY = AMQrp, QUETHD = AP,
Succinctly, we write
P = QEm,

.'(_?f’;n+1) — A2P1§31m)_

3. GENERATING FUNCTIONS

For notational convenience we let

Pran = Pr,n+1-
Define formally

oo
pr(z) = Zp,,nx".
n=0
Then it can be shown from (1.2) that the generating function for p,(z) is

1

(@)= T

Theorem 1:

o0 Z'm
pr(z) = exp (Z Qr,m—n;) .

m=l

Proof:

Inp.(z) = —In(1 — az)(1 — Bz) using (i), (iii)
= —In(l — az) — In(1 — Bz)

o0 m,..m o0 m,.om
QT
— m m
m=1 m=1
o T
=3 @m+pm)
m=1

(2.10)

(2.11)

(2.12)
(2.13)

(2.14)

3.1)

(3.2)

(3.3)

(3.4)
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We next define a type of generalized Pell polynomial, p, »(z), by means of an exponential
generating function which has the form of a Sheffer generating function [4]:

o0 t"
> pen(@) = = epr(0) (35)
n=0 :
So

Pra = Prn(0)/nl. (3.6)
Then

o0 tn o0
Y Pra(2) i €™ Prat”
: n=0

n=0
& = tr
=e€" Zpr,n(o);ﬁ (3.7
n=0 )
analogous to the classical polynomials
00 tn 2zt g tn
Y Hn(@) =€y Ha(0)—, (38)
n=0 n=0
o0 | tn ¢ o0 tn
3 Bu(z) = ¢° > Bn(0) 5, (3.9)
n=0 n=0
00 t" . o tﬂ
> Bal@) s =Y Bal0) o, (3.10)
n=0 n=0

of Hermite, Bernoulli and Euler respectively (Andrews et al, 1999).

4. POLYNOMIAL PROPERTIES
The Bernoulli polynomials can be exptlessed in the umbral calculus [7] by
Bn(z) = (z + B(0))"
in which, after expansion of the binomial, a superscript is replaced by a subscript (and where

B,(0) = B,). Similarly,
Prn(z) = (& +pr(0))". (4.1)
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Theorem 2:

n

pen@) = 3 () prn-r (012"

k=0
Proof:
00 o0 00
" zktk .
Zpr,n(z)ﬁ == Z T Zpr,jtj from (32), (35)
n=0 ) k=0 T gm0
D D)
- ek T
n=0 k=0 k! s
S0

= nl
Pra(z) = kZ_O m(n - k)!pr,n—k(o)xk

= Z (:)Pr,n—k(o)xk, by (3.6), (3.7) as required (as in (4.1)).
k=0

(4.2)

The first few expressions for p () are set out in Table 1. The coefficients for non-zero

prn () are elements of sequences which have entries in Sloane and Plouffe [12].

n Prn(®)

0 Pro

1 ProZ + Pr1

2 1’1‘,0"1"2 + 2177,155 + 2171',2

3 | proz® + 3pr,12% + 6p;,22 + 6pr 3.

Table 1. The first few expressions for p, ,(z)
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On the assumption of continuity and uniform convergence in the appropriate closed in-
tervals, prn(z) is an Appell polynomial because

F e " ot
oz § pr,n(‘c)m = te'pr(t)
n=0 )

oo o
=1 E Prin ((I:) :’;j

n=0
) 4
= Z "Prn—1 (5’3);,'
n=1

which yields the Appel set criterion:

p;‘,n(x) =npra-1(z), n=1,2,3,.... (4.3)

Differentiating ¢ times, we obtain
n!
P%(“’) = ml’nn—t(”)- (4.4)

The differential equation for p,n(z) is now readily obtained.

Theorem 3:
!

Pra(@) = (0= 1)p] 51 () = (n — 1)pr,n-2(z) = 0. (4.5)
Proof:
From (4.3) we have that

p:*,,n(m') =n(n— Dprn-2(x)
= (n — 1)[(n — 1)prn-2(2) + prn—2(z)]
= (n — 1)p} p—1() + (n — 1)pr.n—2(z) as required.

Similarly from (4.3) we can obtain an integration formula

[ ponle) = Brztt@)peaa©) (4.6

The prn{z) are not orthogonal since Shohat [10] has proved that the only system of
orthogonal polynomials which is an Appell polynomial sequence is that which is reducible to
the Hermite polynomials by a linear transformation. The p,,(z) are related to the Hermite
polynomials by the result in (4.7).
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Theorem 4:

oo m o o
Z Hm(z)pr,n(y);{, = exp(2zyt — y*t?) Z Hy(z — yt)prn (O)E

me=0 n=0

Proof; We use the known result [1]:

e n
> Hm+n($)‘i_! = exp(2zy — y*) Hm(z —y)

n=0

so that the right hand side of (4.2)

zyt—y?t? o " X = ymtm-i-n
e~y ;Hn(x - yt)Pr,n(O)a = Z Z Hm-f-n(a’)Pr,n(O)_m“!;{!—

n=0m=0

=3 Hea@pnn0) g

n=0 m==0 n (m + n)|
00 ™ ) £
= 3 o) (X___,; (7 )orn(0r0 )g

(A7)

(e 2] tm
= Z Hm(z)pr,m(y)-m, as required (by Theorem 2).

m=0

The prn(z) are not of binomial type [8] because

Pro(+y) = (z+y+p(0)"

£ (?) (z+2r(0))'(y +pr(0)"
=0

=3 (})prs@mrni)

We can also obtain an addition formaula.
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Theorem 5:
k -3
Pra(zty) = gjzopr,n lc‘n Fi (k = (4.8)
Proof: From (3.2) and (3.5)
o o}
Zpr, (a:+y)— [1+(w+y) +(m+y)2 +(x+y)3 -]Zpr,nt"
n=0 n=0
o0
=Y @+ Y
m=0 m! n=0
X o0 m
m tn+m
=25 (7) e
n=0 m=0 k=0 :
o0 oc m n
m\ k. m—k t : :
= Z Z Z ¥ Y™ " Pr n—m—— by changing the order of summation,
k ml
n=0 m=0 k=0
SO
m—k . . .
PralT +y) = :g-:okzo k'(m k)! Pron-m, 88 required, on equating coefficients of ¢.

Special Cases:

(z) DPron (21’) Z Z n: pr,n—-m

m=0 k=0

k)‘ —————(duplication formula),

k

@mmﬂ)zzmkwmg

m=0 k=0

(5#) Pra(©) = 3 prn () 2o

m=0
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More generally,

n m

m ™ Lo
Pru(te) = Z Zn!(k)pm_m(t - 1)—75 (multiplication formula).

m=0 k=0

Further investigations could be made of properties analogous to those of other classical
polynorials, such as Jacobi and Laguerre polynomials [13].

5. COMBINATORIAL PROPERTIES

A composition of the positive integer n is a vector {(ay,as,...,ax), the components of
which are the positive integers such that a3 + a2 + -+ -+ ag = n [3]. If the vector has order k,
then the composition is a k-part composition. In what follows v{n) indicates summation over

all the compositions (a1, as,...,ax) of n, the number of components being variable [5]. Let
-1 k-1
R, = Z (———-IZ———pr,al e Proae- (6.1)
v(n)

Then formally

o o _\k-1
Z Rpz™ = Z Z'Y(n) L%_pr,an o PrapT
n=1

n=1

o0

o k
= Z - (— Zpr,na:") /k
k=1 n=1

o0
=In (1 + Zpr,nzn)

n=1

je.o}
=1n (Zp,,nx") ,

n=1

that is,
Theorem 6:

> Pras™ = exp (Z Rnx") . (5.2)
n=1 n

=1
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This, from (3.2) and (3.4), is satisfied by

1
Ry = HQr,no (53)
Thus,
Theorem 7:
N
Qrn = (-1)F lzpﬂm..4»ﬁr (5.4)
y(n)

When r = 0, we find for the Fibonacci and Lucas numbers that

Lo= 3 (1" L fay .. fay, using (13), (14) (5.5)

¥(n)

in which f, = Fy4;. For instance, when n = 3,
13 3 3 3 3
Z(;‘)H)k o Ja==5hh - Shivt (fs+ 3 fih
v

= —3-3+49+1=4=1L,

6. CONCLUDING COMMENTS

Theorem 8: Any polynomial can be expressed in terms of the generalized Pell polynomials.
Proof: From (3.4) and (3.5) we have that

> ™\ t"
expxt = exp (— Z Qrm ‘E) Zpr,n(x)m
m=1 )

n=0

1 o0 tn
T e E r)—
pr(z) nzopr,n( )n!

oo
:(1—2%-:1:2)21) (:z)ﬁ
rn nl’

n=0
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on equating coefficients of t* we get
2" — pra(@) = 2"NPr,n-1(2) — n(n — 1)pr.n—2(z). (6.1)
For example, when n = 2, from Table 1,

pr2(x) — 27 pr1(z) — 20r0(%) = (2% + 271z + 277 4 2) — (271 + 277N — 2

= 1172.

Gratitude is expressed to an anonymous referee for detailed useful comments.
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