Log in / Register

Go to old article view

Get access

Journal of the London Mathematical Society Explore this journal >

View issue TOC

Volume s2-11, Issue 3 October 1975 Pages 285–293

Notes and papers

Congruences on the L-Function of an Elliptic Curve Parametrised by Modular Functions

J. B. Slater

First published:

October 1975 Full publication history

DOI:

10.1112/jlms/s2-11.3.285 View/save citation

Cited by:

0 articles Citation tools

CONGRUENCES ON THE L-FUNCTION OF AN ELLIPTIC CURVE PARAMETRISED BY MODULAR FUNCTIONS

J. B. SLATER

1. Introduction

In a previous paper [4], we showed how to determine the L-function of an elliptic curve of the form

$$E(D): Dy^2z = x^3 + Axz^2 + Bz^3$$

where E is the curve

$$E: y^2z = x^3 + Axz^2 + Bz^3$$

of conductor N, and D is a square-free integer. Our determination used only a knowledge of the homology of $H/\Gamma^{\circ}(N)$ and the eigencycles therein corresponding to the curve E. The work was illustrated by the verification, in part, of the Birch-Swinnerton-Dyer conjectures (for which see, for instance, [5]) for $E_{17}(D)$, with small square-free D, where E_{17} is the curve parametrised by modular functions invariant under $\Gamma^{\circ}(17)$.

In [1], Manin makes empirical observations concerning congruence properties of the reflexive part of certain homology elements in $H/\Gamma^{\circ}(N)$, for n = 11, 17, 19 and 27.

It is not difficult to prove these and to extend them to other cases and this has been done by several others (Birch, Mazur, Stephens, all unpublished). A very natural proof of the general phenomenon is to be found in [2]. Unfortunately, the case of E_{17} , which we require, is not covered. In §2 we give a proof for the case E_{17} which will generalise easily to cover all cases for which such properties hold. We give a table for curves of conductor less than 100 showing the precise behaviour.

In §3, we obtain, as corollaries of Manin's congruences, congruences on N_p , the number of points on the reduction of E_{17} mod p. We also obtain somewhat stronger congruences by more direct methods. In §4, we use the results of §2 and §3 to prove parts of the Birch-Swinnerton-Dyer conjectures for $E_{17}(D)$ in several sequences of cases. The argument is related to that of Razar [3].

2. Congruences on the homology elements

In this, and in subsequent sections, we use freely the results and notation of [4]. We begin by recalling [4; equations (7) and (12)]

$$L_{E}^{*}(1, \chi)M_{\infty}(E) \prod_{p \in S \setminus \{\infty\}} n_{p}(E) = L_{E}(1, \chi) = \sum_{0 \le b < d} \lambda_{b}I(b/d)$$
 (1)

where χ has conductor d, with (d, N) = 1, and

$$\lambda_b = d^{-1} \sum_{(a, d)=1} e(-ab/d) \chi(a)$$

$$I(b/d) = -2\pi i \int_{b/d}^{i\infty} f(z) dz$$

where f(z) dz is the differential on $H/\Gamma_{o}(N)$ corresponding to the elliptic curve E.

Received 26 November, 1973.

[J. LONDON MATH, Soc. (2), 11 (1975), 285-293]

Get access to the full text of this article

Article Information

Related content

Articles related to the one you are viewing

The articles below have been selected for you based on the article you are currently viewing.

Determination of L-Functions of Elliptic Curves Parametrized by Modular Functions

Slater J. B.

Congruences on Some Special Modular Forms

P. Allatt, J. B. Slater June 1978

Elliptic Curves of Prime Conductor

Setzer Bennett

July 1975

The Cosmic Ensemble: Reflections on the Nature–Mathematics Symbiosis

JOSEPH ALMOG

4 September 2007

Universal Bounds on the Torsion of Elliptic Curves

Kubert Daniel Sion

September 1976

WILEY

Browse Publications

Browse by Subject

Resources

Help & Support

Cookies & Privacy

Terms & Conditions

About Us

Wiley Job Network

Advertisers & Agents