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ON THE q-HERMITE POLYNOMIALS AND THEIR
RELATIONSHIP WITH SOME OTHER FAMILIES

OF ORTHOGONAL POLYNOMIALS

Abstract. We review properties of the q-Hermite polynomials and indicate their
links with the Chebyshev, Rogers–Szegö, Al-Salam–Chihara, continuous q-utraspherical
polynomials. In particular, we recall the connection coefficients between these families of
polynomials. We also present some useful and important finite and infinite expansions in-
volving polynomials of these families including symmetric and non-symmetric kernels. In
the paper, we collect scattered throughout literature useful but not widely known facts con-
cerning these polynomials. It is based on 43 positions of predominantly recent literature.

1. Introduction
The aim of this paper is to review basic properties of the q-Hermite

polynomials and collect their not always widely known properties scattered
throughout the recent literature. The q-Hermite polynomials constitute a
1-parameter family of orthogonal polynomials that for q = 1 are equal to
the well known Hermite polynomials, more precisely the probabilistic Her-
mite polynomials i.e. orthogonal with respect to the density of N(0, 1) dis-
tributions (exp(−x2/2)/

√
2π). For q = 0, they are equal to the re-scaled

Chebyshev polynomials of the second kind, again more precisely, polyno-
mials orthogonal with respect to the Wigner measure i.e. the one with the
density 2

√
4− x2/π. On the other hand, these polynomials are related to the

so called Rogers–Szegö polynomials or Rogers (continuous q-ultraspherical)
polynomials and other important families of polynomials such as the Al-
Salam–Chihara polynomials.

Why these polynomials are important? For one thing, they are very
simple and as it will be shown in the sequel, many more complicated (i.e.
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having more parameters) families of orthogonal polynomials can be expressed
as linear combinations of the q-Hermite polynomials. Secondly, since they
are simple, many facts concerning them are known. Thirdly, during last 15
years they appeared within several interesting applications that came from
the theories quite distant from the classical q-series theory or combinatorics.

They appeared long time ago by the end of XIX-th century as a version of
the Rogers polynomials (see [28], [27], [29]), their important properties were
examined by Szegö [40] and Carlitz [9], [10], [8] through XX-th century,
but only recently it appeared that they are important in non-commutative
probability (see e.g. [3], [43], [42]), quantum physics (see e.g. [13], [12]),
combinatorics (see e.g. [18], [31], [17]) and last but not least ordinary, clas-
sical probability theory (see e.g. [4], [5], [7], [6], [23], [24]) extending the
spectrum of known, finite support measures.

To define these polynomials and briefly describe their properties one has
to adopt notation used in the so called q-series theory. Moreover, the termi-
nology concerning these polynomials is not fixed and under the same name
appear sometimes different, but related to one another families of polynomi-
als. Thus, one has to be aware of these differences.

That is why the next section of the paper is devoted to notation, defi-
nitions and discussion of different families of polynomials that function un-
der the same name. The following section is dedicated to various ‘finite
expansions’ formulae, establishing relationships between these families of
polynomials, including so called ‘connection coefficients’ and ‘linearization’
formulae. The last section is dedicated to some infinite expansions involving
discussed polynomials. It consists of three subsections, the first of which
is devoted to different generalizations of the Mehler expansion formula, the
second one to some useful infinite expansions including reciprocals of some
kernels that have auxiliary meaning. Finally, the third subsection is dedi-
cated to an attempt of generalization of the 3-dimensional Kibble–Slepian
formula with the Hermite polynomials replaced by the q-Hermite ones.

2. Notation and definitions
q is a parameter. We will assume that −1 < q ≤ 1 unless otherwise

stated. The case q = 1 may not always be considered directly but sometimes
as left hand side limit ( i.e. q −→ 1−). We will point out these cases.

We will use traditional notation of the q-series theory i.e. [0]q = 0;

[n]q = 1 + q + . . .+ qn−1, [n]q! =
∏n
j=1 [j]q , with [0]q! = 1,[

n

k

]
q

=


[n]q !

[n−k]q ![k]q !
, n ≥ k ≥ 0,

0, otherwise.(
n
k

)
will denote ordinary, well known binomial coefficient.
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It is useful to use the so called q-Pochhammer symbol for n ≥ 1:

(a; q)n =

n−1∏
j=0

(
1− aqj

)
, (a1, a2, . . . , ak; q)n =

k∏
j=1

(aj ; q)n ,

with (a; q)0 = 1.
Often (a; q)n as well as (a1, a2, . . . , ak; q)n will be abbreviated to (a)n and

(a1, a2, . . . , ak)n , if it will not cause misunderstanding.
It is easy to notice that (q)n = (1− q)n [n]q! and that[

n

k

]
q

=

{
(q)n

(q)n−k(q)k
, n ≥ k ≥ 0,

0, otherwise.

The above mentioned formula is just an example where direct setting q = 1
is senseless however passage to the limit q −→ 1− makes sense.

Notice that in particular [n]1 = n, [n]1! = n!,
[
n
k

]
1

=
(
n
k

)
, (a)1 = 1 − a,

(a; 1)n = (1− a)n and [n]0 =

{
1 if n ≥ 1

0 if n = 0
, [n]0! = 1,

[
n
k

]
0

= 1, (a; 0)n ={
1 if n = 0

1− a if n ≥ 1
.

i will denote imaginary unit, unless otherwise clearly stated.
In the sequel, we shall also use the following useful notation:

S (q) =

{
[− 2√

1−q ,
2√
1−q ] if |q| < 1,

R if q = 1.

Sometimes we will define sets of polynomials only on bounded intervals.
Of course they can be naturally extended to whole real line.

Basically, each considered family of polynomials will be of one of two
kinds. The first ‘kind’ will be orthogonal on S (q) and their names generally
start with the capitals. The polynomials of the second ‘kind’ will be or-
thogonal on [−1, 1] and their names will generally start with the lower case
letters. There will be in fact 4 exceptions for the two kinds of Chebyshev
polynomials (traditionally denoted by T and U), the so called Rogers or
continuous q-ultraspherical polynomials traditionally denoted by C and the
Al-Salam–Chihara polynomials in its ‘lower case version’ traditionally de-
noted by Q. These polynomials are orthogonal on [−1, 1] but their names as
mentioned before traditionally start with the capital letter. The difference
between those two kinds of polynomials are minor. Besides the ‘lower case
letters’ polynomials either do not allow the case q = 1 or this case leads to
some trivialities. On the contrary, for the ‘upper case letters’ polynomials,
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the case q = 1 either considered directly or understood as a limit q −→ 1−

leads to important simplifications and supports intuition.
As of now, it seems that the ‘upper case’ polynomials are more important

in the applications that appeared recently such as probability theory both
commutative and non-commutative or quantum physics, while the ‘lower
case’ polynomials are more typical in the special functions theory and the
combinatorics.

In brief description of certain functions, given by infinite products, im-
portant for the discussed families of polynomials, we will use the following
families of auxiliary polynomials of degree at most 2.

In fact, they are again of two different forms (as are the families of poly-
nomials) that are connected with the fact if considered polynomials are or-
thogonal on [−1, 1] regardless of q or on S (q). As the families of polynomials,
these auxiliary polynomials will be denoted by the name starting with the
capital if the case concerns orthogonality on S (q).

Hence, we will consider for k ≥ 0:

v (x|a) = 1− 2ax+ a2, Vq(x|a) = 1− (1− q)ax+ (1− q)a2,
l (x|a) = (1 + a)2 − 4xa2, Lq(x|a) = (1 + a)2 − (1− q)x2a,

w (x, y|t) = (1− t2)2 − 4xyt(1 + t2) + 4t2(x2 + y2),

Wq(x, y|t) = (1− t2)2 − (1− q)xyt(1 + t2) + (1− q)t2(x2 + y2).

Let us notice that

w (x, x|t) = (1− t)2l(x|t),
Wq (x, x|t) = (1− t)2Lq(x|t),

and that also

(aeiθ, ae−iθ)1 = v(x|a),

(aeiθ+iη), ae−iθ+iη, aeiθ−iη, ae−iθ−iη)1 = w(x, y|a),

(aei2θ, ae−i2θ)1 = l(x|a),

(
aeiθ, ae−iθ

)
∞

=

∞∏
k=0

v
(
x|aqk

)
,(2.1)

(
tei(θ+φ), tei(θ−φ), te−i(θ−φ), te−i(θ+φ)

)
∞

=

∞∏
k=0

w
(
x, y|tqk

)
,(2.2)

(
ae2iθ, ae−2iθ

)
∞

=

∞∏
k=0

l
(
x|aqk

)
,(2.3)

where, as usually in the q-series theory, x = cos θ and y = cosφ.
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The following convention will help in ordered listing of the properties of
the discussed families of polynomials. Namely, the family of polynomials
whose names start with, say a letter A, will be referred to as A (similarly
for the lower case a). There will be one exception, namely members of the
so called family of big q-Hermite polynomials are traditionally denoted by
letter H (or h) as members of the family of q-Hermite polynomials. So,
family of big q-Hermite polynomials will be referred to by bH.

Below we define sets of polynomials, and present their generating func-
tions and measures with respect to which these polynomials are orthogonal,
provided these measures are positive.

2.1. Hermite. The Hermite polynomials are defined by the following 3-
term recurrence (2.4), below:

(2.4) xHn (x) = Hn+1 (x) + nHn−1,

n ≥ −1, with H−1 (x) = 0 and H0 (x) = 1. They slightly differ from the
Hermite polynomials hn considered in most of the books on special functions.
Namely

2xhn (x) = hn+1(x) + 2nhn−1(x),

with h−1 (x) = 0, h0 (x) = 1.

It is known that polynomials {hn} are orthogonal with respect to
exp

(
−x2

)
while {Hn} are orthogonal with respect to exp

(
−x2/2

)
. Moreover

Hn (x) = hn
(
x/
√

2
)
/
(√

2
)n. Besides we have

exp
(
xt− t2/2

)
=
∑
k≥0

tk

k!
Hk(x),(2.5)

exp
(
2xt− t2

)
=
∑
k≥0

tk

k!
hk(x).(2.6)

2.2. Chebyshev. They are of two kinds. The Chebyshev polynomials of
the first kind {Tn}n≥−1 are defined by the following 3-term recursion

(2.7) 2xTn(x) = Tn+1(x) + Tn−1(x),

for n ≥ 1, with T0(x) = 1, T1(x) = x. One can define them also in the
following way:

(2.8) Tn (cos θ) = cos(nθ).

The Chebyshev polynomials {Un(x)}n≥0 of the second kind are defined
by the same 3-term recurrence i.e. (2.7) with the different initial conditions,
namely U0(x) = 1 and U1(x) = 2x. One shows that they can be defined also
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by

(2.9) Un (cos θ) =
sin (n+ 1) θ

sin θ
.

We have

1�

−1
Tn(x)Tm(x)

dx

π
√

1− x2
=


1 if m = n = 0,

1/2 if m = n 6= 0,

0 if m 6= n,

1�

−1
Un(x)Um(x)

2
√

1− x2
π

dx =

{
1 if m = n,

0 if m 6= n,

and for |t| ≤ 1
∞∑
k=0

tkTk(x) =
1− tx

1− 2tx+ t2
,(2.10)

∞∑
k=0

tkUk(x) =
1

1− 2tx+ t2
.(2.11)

2.3. q-Hermite. The q-Hermite polynomials are defined by:

(2.12) 2xhn(x|q) = hn+1(x|q) + (1− qn)hn−1(x|q),
for n ≥ 1 with h−1(x|q) = 0, h0(x|q) = 1.

The polynomials hn are often called the continuous q-Hermite polyno-
mials. Since the terminology is not fixed and also since we will consider
only two types of them (defined by (2.12) and (2.14)) we will use the name
q-Hermite polynomials for the brevity.

In fact we will also use the following transformed form of the polynomials
hn, namely the polynomials:

(2.13) Hn (x|q) = (1− q)−n/2hn
(
x
√

1− q
2

|q
)
.

It is easy to notice that the polynomials {Hn (x|q)} satisfy the following
3-term recurrence

(2.14) xHn (x|q) = Hn+1 (x|q) + [n]qHn−1(x),

for n ≥ 1 with H−1 (x|q) = 0, H1 (x|q) = 1. The name is justified since one
can easily show that n ≥ −1

Hn (x|1) = Hn(x).

Notice that since [n]0 = 1 for n ≥ −1, we have

(2.15) Hn (x|0) = Un(x/2).
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It is known that (see e.g. [22](14.26.2)):
1�

−1
hn (x|q)hm (x|q) fh (x|q) dx =

{
(q)n if m = n,

0 if m 6= n,

�

S(q)

Hn(x|q)Hm(x|q)fN (x|q)dx =

{
[n]q! if m = n,

0 if m 6= n,

where we denote

fh (x|q) =
2 (q)∞

√
1− x2

π

∞∏
k=1

l
(
x|qk

)
,(2.16)

fN (x|q) =

{√
1− qfh(x

√
1− q/2|q)/2 if |q| < 1,

exp
(
−x2/2

)
/
√

2π if q = 1,
(2.17)

and (see [22](14.26.11))
∞∑
j=0

tj

(q)j
hj (x|q) =

1∏∞
k=0 v (x|tqk)

,(2.18)

∞∑
j=0

tj

[j]q!
Hj (x|q) =

1∏∞
k=0 Vq (x|tqk)

.(2.19)

Convergence is in the above formulae for |x|, |t| ≤ 1 in (2.18) and x ∈
S (q) and

∣∣t√1− q
∣∣ ≤ 1 in (2.19).

One proves also that

lim
q−>1−

fN (x|q) =
1√
2π

exp

(
−x

2

2

)
,(2.20)

lim
q−>1−

1∏∞
k=0 Vq (x|tqk)

= exp

(
xt− t2

2

)
.(2.21)

Rigorous and easy proofs of these facts can be found in [18]. The conver-
gence in distribution is obvious since we have ∀n ≥ 0: limq−>1− Hn (x|q) =
Hn (x|1) consequently we have the convergence of moments.

Let us remark that the density fN is a real probabilistic density i.e.
integrates to 1. Since we have (2.20), it is sometimes called q-Gaussian
or q-Normal. It appeared, in non-commutative probability context, in an
important paper [3]. Later in classical probability context appeared in [4]
and [5]. Its further properties, including algorithm how to simulate sequences
if independent random observations having fN as its density, were presented
in [39].

One considers also the small generalization of the q-Hermite polynomi-
als namely the so called big continuous q-Hermite polynomials. i.e. the
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polynomials defined by the following 3-term recurrence:

(2x− aqn)hn (x|a, q) = hn+1 (x|a, q) + (1− qn)hn−1(x|a, q),
(x− aqn)Hn (x|a, q) = Hn+1 (x|a, q) + [n]qHn−1(x|a, q),

n ≥ 0, with initial conditions: h−1 (x|a, q) = H−1 (x|a, q) = 0 and h0 (x|a, q)
= H0 (x|a, q) = 1. For the sake of brevity, we will call them simply big
q-Hermite polynomials. They are obviously inter-related by

Hn (x|a, q) = hn

(√
1− qx

2
|a
√

1− q, q
)
/ (1− q)n/2.

Notice that, using well known properties of the ordinary Hermite polynomi-
als, we have:

Hn (x|a, 1) = Hn (x− a).

One can easily show (by calculating generating function and comparing it
with (2.22), below and then applying (2.1)) that

hn (x|a, q) =

n∑
k=0

[
n

k

]
q

(
aeiθ

)
k
ei(n−2k)θ,

n ≥ −1, where as usually x = cos θ.
We have (see e.g. [22](14.18.13))

∞∑
j=0

tj

(q)j
hj (x|a, q) =

(at)∞∏∞
k=0 v (x|tqk)

,(2.22)

∞∑
j=0

tj

[j]q!
Hj (x|a, q) =

((1− q)at)∞∏∞
k=0 Vq (x|tqk)

.(2.23)

We have also the following orthogonality relationships for |a| < 1 (again e.g.
[22](14.18.2))

�

S(q)

Hn (x|a, q)Hm (x|a, q) fbN (x|a, q) =

{
0 if n 6= m,

[n]q! if n = m,

where
fbN (x|a, q) = fN (x|q) 1∏∞

k=0 Vq (x|aqj)
,

with similar formula for the polynomials hn (x|a, q) .
It should be mentioned also that if a > 1 then the measure that makes

polynomials hn(x|a, q) orthogonal has, apart from absolutely continuous part
with the aproprietly modified density fbN , also #{k : 1 < aqk ≤ a} atoms
at points

(2.24) xk = (aqk + a−1q−k)/2,
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with weights

ŵk =
(1− a2q2k)(a−2)∞(a2)k

(1− a2)(q)k
q−(3k

2+k)/2

(
−1

a4

)k
.

The family of the big q-Hermite polynomials will be referred to by symbol
bH. For details see [22](14.18.3).

2.4. Al-Salam–Chihara. Following literature on special functions, Al-Sa-
lam–Chihara polynomials are defined by the following recursion:

(2.25) (2x− (a+ b)qn)Qn (x|a, b, q)
= Qn+1 (x|a, b, q) + (1− abqn−1)(1− qn)Qn−1(x|a, b, q),

n ≥ 0, with Q−1 (x|a, b, q) = 0, Q0 (x|a, b, q) = 1. From Favard’s theorem
([16]), it follows that if |ab| ≤ 1, then there exists positive measure with
respect to which polynomials Qn are orthogonal. Further, when |a|, |b| < 1
then this measure has density.

As in the case of big q-Hermite polynomials, if one of the parameters
a and b is greater than 1 then the measure that makes ASC polynomials
orthogonal has #{k : 1 < aqk ≤ a} atoms located at points xk defined by
(2.24) with weights given by:

ŵk =
(a−2)∞(1− a2q2k)(a2, ab)k

(q, ab, b/a)∞(1− a2)(q, aq/b)k
q−k

2

(
1

a3b

)k
.

For details see [22](14.8.3).
Since we are interested in the ASC polynomials in connection with the

q-Hermite polynomials, we will consider only the case |a|, |b| < 1.
We will more often use these polynomials with new parameters ρ and

y defined by a =
√
1−q
2 ρ

(
y − i

√
4

1−q − y2
)
, b =

√
1−q
2 ρ

(
y + i

√
4

1−q − y2
)
,

such that y2 ≤ 4/(1− q), |ρ| < 1. To support intuition let us remark:

a+ b =
√

1− qρy, ab = ρ2.

More precisely, we will also consider the polynomials

(2.26) Pn (x|y, ρ, q) = Qn

(
x

√
1− q
2
|ρ
√

1− q
2

(
y − i

√
4

1− q
− y2

)
,

ρ
√

1− q
2

(
y + i

√
4

1− q
− y2

)
, q

)
/(1− q)n/2.

It is also of use to consider another version of the ASC polynomials, namely
for |x|, |y|, |ρ|, |q| < 1:

(2.27) pn (x|y, ρ, q) = Pn

(
2x√
1− q

| 2y√
1− q

, ρ, q

)
.
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One can easily show that the polynomials Pn and pn satisfy the following
3-term recurrence:

(x− ρyqn)Pn(x|y, ρ, q)(2.28)

= Pn+1(x|y, ρ, q) + (1− ρ2qn−1)[n]qPn−1(x|y, ρ, q),
2(x− ρyqn)pn (x|y, ρ, q)(2.29)

= pn+1 (x|y, ρ, q) +
(
1− ρ2qn−1

)
(1− qn)pn−1(x|y, ρ, q),

with P−1 (x|y, ρ, q) = p−1 (x|y, ρ, q) = 0, P0 (x|y, ρ, q) = p0 (x|y, ρ, q) = 1
since as stated above a + b = ρy

√
1− q and ab = ρ2 in the case of the

polynomials P and a+b = 2ρy and ab = ρ2 in the case of the polynomials p.
The polynomials {Pn} have a nice probabilistic interpretation see e.g.

[5]. To support intuition let us notice that for n ≥ 1:

Pn (x|y, ρ, 1) = (1− ρ2)n/2Hn

(
x− ρy√

1− ρ2

)
,

Pn (x|y, ρ, 0) = Un (x/2)− ρyUn−1 (x/2) + ρ2Un−2(x/2),

if we define U−r(x) = 0, r ≥ 1.

We have the following orthogonality relationships (see [22](14.8.2)) sat-
isfied for |a|, |b| < 1:

1�

−1
Qn (x|a, b, q)Qm (x|a, b, q)ω (x|a, b, q) dx =

{
0 if n 6= m,

(q)n (ab)n if m = m,

where

ω (x|a, b, q) =
(q)∞ (ab)∞
2π
√

1− x2

×
∞∏
k=0

l
(
x|qk

)
((1− abq2k)2 − 2x(a+ b)qk(1 + abq2k) + q2kab(4x2 + (a+ b)2/(ab))

.

Also after passing to the parameters ρ and y, we get (see [5]):

(2.30)
�

S(q)

Pn(x|y, ρ, q)Pm (x|y, ρ, q) fCN (x|y, ρ, q) dx

=

{
0 if m 6= n,

[n]q!
(
ρ2
)
n

if m = n,

where we denoted for |q| < 1:

(2.31) fCN (x|y, ρ, q) =

√
1− q (q)∞

(
ρ2
)
∞

2π
√
Lq (x|1)

∞∏
k=0

Lq
(
x|qk

)
Wq (x, y|ρqk)

.
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Let us notice that :

fCN (x|y, ρ, q) = fN (x|q)
(
ρ2
)
∞∏∞

k=0Wq (x, y|ρqk)
.

We also set

(2.32) fCN (x|y, ρ, 1) =
1√

2π (1− ρ2)
exp

(
− (x− ρy)2

2 (1− ρ2)

)
.

Notice that we have also

fCN (x|y, ρ, 0) =
(1− ρ2)

√
4− x2

2πWq(x, y|ρ)
,

which is called Kesten–McKay density.
Again one shows (see e.g. [18]) that

fCN (x|y, ρ, q) −→
q→1−

fCN (x|y, ρ, 1) .

Following [36], we have: ∀ |q| < 1, x, y ∈ S (q):

0 <

(
ρ2
)
∞

(− |ρ|)4∞
≤ fCN (x|y, ρ, q)

fN (x|q)
≤
(
ρ2
)
∞

(|ρ|)4∞
.

One shows (see e.g. [5]) that for |x|, |z| ∈ S (q):
�

S(q)

fCN (x|y, ρ1, q) fCN (y|z, ρ2, q) dy = fCN (x|z, ρ1ρ2, q) .

This property is nothing else but Chapman–Kolmogorov property satisfied
by the density fCN interpreted as the density of the transition distribution
of some Markov chain.

Distribution with the density fCN is sometimes called conditional q-
Gaussian or conditional q-Normal since we have (2.32). It appeared in [3]
and later was analyzed in [4] and [5].

We also have
∞∑
k=0

tk

(q)k
Qk (x|a, b, q) =

(at, bt)∞∏∞
j=0 v (x|tqj)

,

and for the parameters ρ and y:
∞∑
k=0

tk

[k]q!
Pk (x|y, ρ, q) =

∞∏
j=0

Vq
(
y|ρtqj

)
Vq (x|tqj)

.

2.5. Continuous q-utraspherical polynomials. It turns out that the
polynomials {Hn}n≥−1 are also related to another family of orthogonal poly-
nomials {Cn (x|β, q)}n≥−1 which was considered by Rogers in 1894 (see [27]).
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Now they are called the continuous q-utraspherical polynomials. The poly-
nomials Cn can be defined through their 3-recurrence (see [22](14.10.19))

2(1−βqn)xCn(x|β, q) = (1−qn+1)Cn+1 (x|β, q)+(1−β2qn−1)Cn−1 (x|β, q) ,

for n ≥ 0, with C−1 (x|β, q) = 0, C0 (x|β, q) = 1, where β is a real parameter
such that |β| < 1. One shows (see e.g. [16](13.2.1)) that for |q|, |β| < 1,
n ≥ 1:

Cn (x|β, q) =
n∑
k=0

(β)k (β)n−k
(q)k (q)n−k

ei(n−2k)θ,

where x = cos θ. Hence we have (following formula (2.40)):

Cn (x|0, q) =
hn (x|q)

(q)n
.

In fact, we will consider slightly modified polynomials Cn. Namely, we will
consider polynomials Rn (x|β, q) related to polynomials Cn through the re-
lationship:

(2.33) Cn (x|β, q) = (1− q)n/2Rn
(

2x√
1− q

|β, q
)
/ (q)n , n ≥ 1.

One can easily check that the polynomials {Rn} satisfy the following 3-term
recurrence:
(2.34)

(1− βqn)xRn (x|β, q) = Rn+1 (x|β, q) +
(
1− β2qn−1

)
[n]q Rn−1(x|β, q).

We have an easy proposition

Proposition 1. For n ≥ 1:

i) Rn (x|0, q) = Hn(x|q),
ii) Rn (x|q, q) = (q)n Un(x

√
1− q/2),

iii) limβ−>1−
Rn(x|β,q)

(β)n
= 2

Tn(x
√
1−q/2)

(1−q)n/2 .

Proof. i) direct calculation.
ii) We have for β = q: R̃n+1 (x|q, q) = xR̃n (x|q, q)− R̃n−1 (x|q, q) , where

we denoted R̃n(x|q, q) = (1− q)n/2Rn (x|q, q) / (q)n. Now recall (2.7). Since
we have R0 (x|q, q) = R̃0(x|q, q) = 1 and R1 (x|q, q) = R̃1(x|q, q) = x, we
deduce that R̃n(x|q, q) = Un(x/2).

iii) Let us first denote Fn (x|β, q) = Rn(x|β,q)
(β)n

, write the 3-term recurrence
for it obtaining

Fn+1 (x|β, q) = xFn (x|β, q)− (1− qn)(1− β2qn−1)
(1− q)(1− βqn)(1− βqn−1)

Fn−1(x|β, q),
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with F−1 (x|β, q) = 0, F0 (x|β, q) = 1 and let β− > 1−. We immediately
see that the limit, denote it by Fn (x|1, q) , satisfies the following the 3-term
recurrence:

Fn+1 (x|1, q) = xFn (x|1, q)− Fn−1 (x|1, q)
(1− q)

,

which, confronted with the 3-term recurrence satisfied by the polynomials
Tn, proves our assertion.

It is known that (see e.g. [16] (13.2.4)):

1�

−1
Cn (x|β, q)Cm (x|β, q) fC (x|β, q) dx =

0 if m 6= n,
(β2)

n
(1−βqn)(q)n

if m = n,

�

S(q)

Rn (x|β, q)Rm (x|β, q) fR (x|β, q) =

0 when n 6= m,
(1−β)(β2)

n
[n]q !

(1−βqn) when n = m,

where we denote

fC(x|β, q) =
(β2)∞

(1− β)(β, βq)∞
fh (x|q) /

∞∏
j=1

l(x|βqj),(2.35)

fR (x|β, q) =
√

1− qfC(x
√

1− q/2|q)/2(2.36)

=

(
q, β2

)
∞
√

1− q
(β, βq)∞ 2π

√
Lq (x|1)

∞∏
k=0

Lq
(
x|qk

)
Lq (x|βqk)

.(2.37)

Let us remark that

fR (x|β, q) = fN (x|q)
(
β2
)
∞

(β, βq)∞
∏∞
k=0 Lq (x|βqk)

.

Notice also that examining the 3-term recurrence satisfied by Pn and Rn, we
see ∀n ≥ −1:

Pn (x|x, ρ, q) = Rn(x|ρ, q),

and that for |x|, |y| ∈ S (q)

fCN (x|x, ρ, q) /(1− ρ) = fR(x|ρ, q),

since we have (1 − ρ2q2k)2 − (1 − q)ρqk(1 + ρ2q2k)x2 + 2(1 − q)ρ2x2q2k =(
1− ρqk

)2
(
(
1 + ρqk

)2 − (1− q)ρx2qk) and the fact that (ρ)∞(ρq)∞
(ρ)2∞

= 1
1−ρ .

We also have
∞∑
k=0

tkCk (x|β, q) =
∞∏
k=0

v
(
x|βtqk

)
v (x|tqk)

,(2.38)



692 P. J. Szabłowski

∞∑
k=0

tk

[k]q!
Rk (x|β, q) =

∞∏
j=0

Vq
(
x|βtqk

)
Vq (x|qkt)

.(2.39)

Remark 1. Assertion ii) of Proposition 1 could have been deduced
also from (2.39), namely putting β = q we get

∑∞
k=0

tk

[k]q !
Rk (x|q, q) =

1
(1−(1−q)tx+(1−q)t2) which confronted with (2.11) and formula (q)n =

(1− q)n [n]q! leads to the conclusion that Rk (x|q, q) / (q)k=Uk
(
x
√

1− q/2
)
.

Following this idea we see that
∞∑
k=0

tk

[k]q!
Rk
(
x|q2, q

)
=

1

(1− (1− q)tx+ (1− q)t2)(1− (1− q)txq + (1− q)t2q2)
.

Hence Rk
(
x|q2, q

)
/ (q)k =

∑n
k=0 q

kUk
(
x
√

1− q/2
)
Un−k

(
x
√

1− q/2
)
using

common knowledge on the properties of the generating functions. Simple
‘generating functions’ argument shows that

n∑
k=0

qkUk

(
x
√

1− q/2
)
Un−k

(
x
√

1− q/2
)

simplifies to
∑bn/2c

j=0 qj [n+ 1− 2j]q Un−2j
(
x
√

1− q/2
)
. On the other hand

since these polynomials are proportional to Rk
(
x|q2, q

)
, we know their 3-

term recurrence and the density that makes them orthogonal. Similarly
for other cases Rk (x|qm, q) , m ≥ 3. Besides notice that ∀n ≥ −1, x ∈ R
limm→∞Rk (x|qm, q) = Hn(x|q).

We will need also two families of auxiliary polynomials.

2.6. Rogers–Szegö. These polynomials are defined by the equality:

sn (x|q) =

n∑
k=0

[
n

k

]
q

xk,

for n ≥ 0 and s−1 (x|q) = 0. They will be playing here an auxiliary rôle. In
particular, one shows (see e.g. [16](13.1.7)) that:

(2.40) hn (x|q) = einθsn

(
e−2iθ|q

)
,

where x = cos θ, and that:

sup
|x|≤1

|hn (x|q)| ≤ sn(1|q).
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In the sequel, the following identities discovered by Carlitz (see Exercise
12.2(b) and 12.2(c) of [16]), are true for |q|, |t| < 1:

(2.41)
∞∑
k=0

sk (1|q) tk

(q)k
=

1

(t)2∞
,

∞∑
k=0

s2k (1|q) tk

(q)k
=

(
t2
)
∞

(t)4∞
,

will allow to show convergence of many considered in the sequel series.

2.7. q−1-Hermite. First of all notice that polynomials {Hn(x|q)}n≥−1 are
orthogonal for q > 1 since then [n]q > 0. With polynomials hn it is not so
simple. For q > 1 one has to consider polynomials{

(−i)n(q − 1)n/2Hn

(
− 2ix√

q − 1
|q
)}

n≥−1
.

Discussion of this case is thoroughly done in [20]. Note that in this case the
measure that makes these polynomials orthogonal is not unique.

We will need, for auxiliary purposes, polynomials closely related to
Hn(x|q−1) for q ∈ (−1, 1]\ {0} and their ’lower case version’. Namely
let polynomials {Bn (x|q)}n≥−1 be defined by (compare [5]) Bn(x|q) =

inqn(n−2)/2Hn(i
√
q x|q−1) for q 6= 0 and satisfying the following 3-term re-

currence:

(2.42) Bn+1 (y|q) = −qnyBn (y|q) + qn−1 [n]q Bn−1(y|q),
for all n ≥ 0 and with B−1 (y|q) = 0, B0 (y|q) = 1. One easily shows that
Bn (x|1) = inHn (ix). We will also need the ’continuous’ or ’lower case
version’ of these polynomials namely bn (y|q) = (1− q)n/2Bn

(
2y/
√

1− q|q
)
.

Polynomials bn satisfy the following 3-term recurrence:

(2.43) bn+1 (y|q) = −2qnybn (y|q) + qn−1(1− qn)bn−1(y|q),
for all n ≥ 0 and with b−1 (y|q) = 0, b0 (y|q) = 1. Following [35](2.24), we
have bn (x|q) = (−1)n q(

n
2)hn

(
x|q−1

)
. (2.44) and (2.45) allow extension of

the definitions of bn and Bn to the case q = 0. Namely we set b0(x|0) = 1,
b1(x|0) = −2x, b2(x|0) = 1 and bn(x|0) = 0, for n = −1, 3, 4, . . . and B0(x|q)
= 1, B1(x|q) = −x and Bn(x|q) = 0, n ≥ 2.

By [5](1.7), we have:
∞∑
k=0

tk

[k]q!
Bk (x|q) =

∞∏
j=0

Vq
(
x|qjt

)
,

∞∑
k=0

tk

(q)k
bk (x|q) =

∞∏
j=0

v(x|qjt).

Comparing the above mentioned formulae, we see that
∞∑
k=0

tk

[k]q!
Bk (x|q) = 1/

∞∑
k=0

tk

[k]q!
Hk(x|q),

and similarly for polynomials {bn}.
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3. Connection coefficients and other useful finite expansions
3.1. Connection coefficients. We consider n ≥ 0.

T&U

Tn(x) = (Un(x)− Un−2(x)) /2,

Un(x) = 2

bn/2c∑
k=0

Tn−2k(x)− (1 + (−1)n) /2.

These expansions belong to common knowledge of the special functions
theory.

H&T

Hn (x|q) = (1− q)−n/2
n∑
k=0

[
n

k

]
q

Tn−2k

(
x
√

1− q/2
)
,

if one sets T−n(x) = Tn (x).
First notice that (2.40) is equivalent to hn(x) =

∑n
k=0

[
n
k

]
q

cos (2k − n) θ

where x = cos θ. Next we use (2.8).
H&H

Hn (x|p) =

bn/2c∑
k=0

C̃n,n−2k (p, q)Hn−2k(x|q),

where

C̃n,n−2k(p, q) =
(1− q)n/2−k

(1−p)n/2

×
k∑
j=0

(−1)j pk−jqj(j+1)/2

[
n−2k+ j

j

]
q

([
n

k− j

]
p

−pn−2k+2j+1

[
n

k− j−1

]
p

)
.

This formula follows the ‘change of base’ formula for the continuous q-
Hermite polynomials (i.e. polynomials hn) in e.g. [17], [2] or [14] (formula
7.2) that states that:

hn (x|p) =

bn/2c∑
k=0

cn,n−2k (p, q)hn−2k(x|q),

where

cn,n−2k (p, q) =
(1− p)n/2

(1− q)n/2−k
C̃n,n−2k(p, q).

U&H

Un

(
x
√

1− q/2
)

=

bn/2c∑
j=0

(−1)j (1− q)n/2−jqj(j+1)/2

[
n− j
j

]
q

Hn−2j(x|q),
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Hn (y|q) =

bn/2c∑
k=0

(1− q)−n/2 q
k − qn−k+1

1− qn−k+1

[
n

k

]
q

Un−2k

(
y
√

1− q/2
)
.

These expansion follow the previous one setting once p = 0 and then
secondly q = 0 and then p = q.

H&bH

hn (x|a, q) =

n∑
k=0

[
n

k

]
q

(−1)kq(
k
2)akhn−k(x|q),(3.1)

Hn (x|a, q) =

n∑
k=0

[
n

k

]
q

(−1)kq(
k
2)akHn−k(x|q).(3.2)

(3.1) is a formula (19) of [11] (see also [12]). (3.2) is a simple consequence
of (3.1).

H&P

Pn (x|y, ρ, q) =
n∑
j=0

[
n

j

]
ρn−jBn−j (y|q)Hj(x|q),(3.3)

Hn(x|q) =

n∑
j=0

[
n

j

]
ρn−jHn−j (y|q)Pj(x|y, ρ, q).(3.4)

For the proof of (3.3), see Remark 1 following Theorem 1 in [5]. For
the proof of (3.4), we start with formula (4.7) in [19] which gives connec-
tion coefficients of hn with respect to Qn. Then we pass to the polynomi-
als Hn&Pn using formulae hn (x|q) = (1− q)n/2Hn

(
2x√
1−q |q

)
, n ≥ 1 and

pn(x|a, b, q) = (1− q)n/2 Pn
(

2x√
1−q |

2a√
(1−q)b

,
√
b, q

)
. By the way, notice that

this formula can be easily derived from assertions iv) and (3.18) with m = 0
presented below and the standard change of order of summation. Now it
remains to return to polynomials Hn.

As a corollary of (3.4) and (2.30), we get a nice formula given in [5]: For
∀n ≥ 1, |ρ| < 1, y ∈ S (q)�

S(q)

Hn(x|q)fCN (x|y, ρ, q) dx = ρnHn (y|q) .

bH&P

Hn (x|a, q) =
n∑
j=0

[
n

j

]
q

Pj

(
x|y, a

b
, q
)(a

b

)n−j
Hn−j(y|b, q),(3.5)

Pn (x|y, ρ, q) =
n∑
k=0

[
n

k

]
q

ρn−kBn−k (x|a/ρ, q)Hk(x|a, q),(3.6)
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where we denoted Bm (x|b, q) df=
∑m

j=0

[
m
j

]
q
bm−jBj(x|q). Strict proof of (3.5)

and (3.6) is presented in [36]. It is easy and is based on (3.3) and (3.2).
P&P

Pn (x|y, ρ, q) =

n∑
j=0

[
n

j

]
q

rn−jPj (x|z, r, q)Pn−j(z|y, ρ/r, q),(3.7)

Pn (y|z, t, q)
(t2)n

=

n∑
j=0

(−t)jqj(j−1)/2
[
n

j

]
q

tjHn−j (y|q) Pj (z|y, t, q)
(t2)j

,(3.8)

if one extends definition of polynomials Pn for |ρ| > 1 by (3.3). (3.7) has
been proved in [36], while (3.8) is given in [35] Corollary 2. Besides, it
follows directly from one of the infinite expansions that will be presented in
section 4.

As a corollary of (3.8) and of course (2.30), we get the following formula:
For ∀n ≥ 1, |ρ| < 1, x ∈ S (q)

�

S(q)

Pn (x|y, ρ, q) fCN (y|x, ρ, q) dy =
(
ρ2
)
n
Hn(x|q).

R&R
For |β|, |γ| < 1:

(3.9) Rn (x|γ, q) =

bn/2c∑
k=0

[n]q!β
k (γ/β)k (γ)n−k

(
1− βqn−2k

)
[k]q! [n− 2k]q! (βq)n−k (1− β)

Rn−2k(x|β, q).

(3.9) is in fact celebrated connection coefficient formula for the Rogers poly-
nomials which was in fact expressed in terms of polynomials Cn. For details
see [16] (13.3.1).

R&H
For |β|, |γ| < 1:

Rn (x|γ, q) =

bn/2c∑
k=0

(−γ)k
qk(k−1)/2 [n]q! (γ)n−k

[k]q! [n− 2k]q!
Hn−2k(x|q),(3.10)

Hn(x|q) =

bn/2c∑
k=0

[n]q!

[k]q! [n− 2k]q!

βk
(
1− βqn−2k

)
(1− β) (βq)n−k

Rn−2k(x|β, q).(3.11)

(3.10) and (3.11) are particular cases of (3.9), the first for β = 0 and the
second for γ = 0.

B&H

(3.12) Bn(x|q) = (−1)n q(
n
2)
bn/2c∑
k=0

[
n

k

]
q

[
n− k
k

]
q

[k]q!q
k(k−n)Hn−2k(x|q).
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(3.12) was proved in [35] Lemma 2 assertion i).
As an immediate observation, we have the following expansion of the

ASC polynomials in the q-Hermite polynomials.

Proposition 2.

Pn (x|y, ρ, q) =

bn/2c∑
k=0

[
n

k

]
q

[
n− k
k

]
q

[k]q!q
k(k−1)ρ2k

×
n−2k∑
s=0

(−1)s
[
n− 2k

s

]
q

q(
s
2)(qkρ)sHn−2k−s(x|q)Hs(y|q).

Proof. First we use (3.3) and then (3.12) obtaining: Pn (x|y, ρ, q) =∑n
s=0

[
n
s

]
q
Hn−s(x|q)ρs(−1)sq(

s
2) ×

∑bs/2c
k=0

[
s
k

]
q

[
n−k
k

]
q

[k]q!q
k(k−s)Hs−2k (y|q).

Now we change the order of summation.

3.2. Useful finite expansions. We start with the so called ‘linearization
formulae’. These are formulae expressing the product of two or more polyno-
mials of some type as linear combinations of polynomials of this very type.
We will extend the name ‘linearization formulae’ by relaxing the require-
ment of polynomials involved to be of the same type. Generally obtaining
‘linearization formula’ is not simple and requires a lot of tedious calculations.

3.2.1. Linearization formulae. We assume n,m, k ≥ 0.
H&H
The formulae below can be found in e.g. [16] (Thm. 13.1.5) and also

in [1] and originally were formulated for polynomials hn. Below, they are
presented for polynomials Hn using (2.13):

Hn(x|q)Hm(x|q) =

min(n,m)∑
j=0

[
m

j

]
q

[
n

j

]
q

[j]q!Hn+m−2j(x|q),(3.13)

Hn(x|q)Hm(x|q)Hk(x|q)(3.14)

=
∑
r,s

[
m

r

]
q

[
n

r

]
q

[
k

s

]
q

[
m+n−2r

s

]
q

[s]q! [r]q!Hn+m+k−2r−2s(x|q)

=

b(k+m+n)/2c∑
j=0

min(m,n,m+n−j)∑
r=max(j−k,0)

[
m

r

]
q

[
n

r

]
q

[
k

j−r

]
q

[
m+n−2r

j−r

]
q

[r]q [j−r]q


×Hn+m+k−2j(x|q).

In fact, (3.13) can be easily derived (by re-scaling and changing of vari-
ables) from an old result of Carlitz ([10]) that was formulated in terms of
the Rogers–Szegö {sn(x|q)}n≥−1 polynomials. Carlitz proved in the same
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paper another useful identity concerning polynomials sn that can be easily
reformulated in terms of the polynomials Hn. The formula below is in a
sense an inverse of (3.13). Namely we have:
(3.15)

Hn+m(x|q) =

min(n,m)∑
k=0

(−1)kq(
k
2)
[
m

k

]
q

[
n

k

]
q

[k]q!Hn−k(x|q)Hm−k(x|q).

H&B

(3.16) Hm(x|q)Bn(x|q)

= (−1)nq(
n
2)
b(n+m)/2c∑

k=0

[
n

k

]
q

[
n+m− k

k

]
q

[k]q!q
−k(n−k)Hn+m−2k(x|q).

This formula, having technical importance, has been proved in [35],
Lemma 2, assertion ii).

H&R
We have also useful formula:

(3.17) Hm(x|q)Rn (x|β, q)

=
∑
k,j

[
m

j

]
q

[
n

k+j

]
q

[
n−k−j

k

]
[k+j]q! (−β)k q(

k
2) (β)n−kHn+m−2k−2j(x|q).

Which was proved in [1] (1.9) for hn and Cn and then modified using
(2.13) and (2.33).

Q&Q
For completeness, let us mention that in [31] there is given a very com-

plicated linearization formula for Al-Salam–Chihara polynomials given in
Theorem 1.

3.2.2. Useful finite sums and identities. We have also the following a
very useful generalization of formula (1.12) of [5] which was proved in [35]
(Lemma 2, assertion i)).

For all n ≥ 0:

(3.18)
n∑
k=0

[
n

k

]
q

Bn−k(x|q)Hk+m (x|q)

=

0 if n > m,

(−1)nq(
n
2)

[m]q !

[m−n]q !
Hm−n(x|q) if m ≥ n.

Let us remark that for q = 0, (3.18) reduces to 3-term recurrence of
polynomials Un (x/2).
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For q = 1, we get
n∑
k=0

(
n

k

)
in−kHn−k (ix)Hk+m (x) =

{
0 if n > m,

(−1)n m!
(m−n)!Hm−n(x) if m ≥ n.

Recently in [38], the following identities involving ASC polynomials pn
were given:
i) ∀n ≥ 1, 0 ≤ k < n, z, y, t ∈ R:

n−k∑
j=0

[
n− k
j

]
q

pj
(
z|y, tqk, q

)
(t2q2k)j

gn−k−j
(
z|y, tqn−1, q

)
(t2qn+j+k−1)n−k−j

= 0,

ii) ∀n ≥ 1, 0 ≤ k < n, z, y, t ∈ R:
n−k∑
m=0

[
n− k
m

]
q

pn−k−m
(
z|y, tqm+k, q

)
gm(z|y, tqm+k−1, q)

(t2q2m+2k)n−k−m (t2qm+2k−1)m
= 0,

where polynomials gn are somewhat analogous to polynomials bn and are
defined by the formula:

(3.19) gn (x|y, ρ, q) =

{
ρnpn

(
y|x, ρ−1, q

)
if ρ 6= 0,

bn(x|q) if ρ = 0.

Similar ones, involving polynomials Pn and appropriately modified polyno-
mials gn, were also presented in [38].

Let us mention that polynomials gn play, with respect to polynomials pn,
similar rôle as polynomials bn with respect to polynomials hn. Namely we
have:

for all |t|, |q|, |ρ| < 1, |x|, |y| ≤ 1:
∞∑
n=0

tn

(q)n
gn (x|y, ρ, q) = 1/ϕp(x, t|y, ρ, q),

for all n ≥ 1, x, y, ρ ∈ R:
n∑
j=0

[
n

j

]
q

pj (x|y, ρ, q) gn−j (x|y, ρ, q) = 0.

4. Infinite expansions
4.1. Kernels. We start with the famous Poisson–Mehler expansion of
fCN (x|y, ρ, q) /fN (x|q) in an infinite series of Mercier’s type (compare e.g.
[25]). Namely the following fact is true:
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Theorem 1. ∀|q|, |ρ| < 1;x, y ∈ S (q) :

(4.1)
(ρ2)∞∏∞

k=0Wq (x, y|ρqk)
=

∞∑
n=0

ρn

[n]q!
Hn(x|q)Hn(y|q).

For q = 1, x, y ∈ R we have

(4.2)
exp

(
x2+y2

2

)
√

1− ρ2
exp(−x

2 + y2 − 2ρxy

2(1− ρ2)
) =

∞∑
n=0

ρn

n!
Hn(x)Hn(y).

Proof. There exist many proofs of both formulae (see e.g. [16], [2]). One
of the shortest, exploiting connection coefficients, given in (3.3) is given
in [33].

Corollary 1. ∀|q|, |ρ| < 1; x ∈ S (q) :∑
k≥0

ρk
(
ρqk−1

)
∞

[k]q!
H2k(x|q) =

(
ρ2
)
∞

(ρ)∞

∞∏
k=0

L−1q

(
x|ρqk

)
.

Proof. We put y = x in (4.1), then we apply (3.13), change order of sum-
mation and finally apply formulae 1

(ρ)j+1
=
∑

k≥0
[
j+k
k

]
q
ρk and (ρ)∞

(ρ)j+1
=(

qj−1ρ
)
∞

We will call expression of the form of the right hand side of (4.1) the kernel
expansion while the expressions from the left hand side of (4.1) kernels. The
name refers to Mercier’s theorem and the fact that for example�

S(q)

k (x, y|ρ, q)Hn(x|q)fN (x|q)dx = ρnHn (y|q) fN (y|q),

where we denoted by k (x, y|ρ, q) the left hand side of (4.1). Hence, we see
that k is a kernel, while functionHn (x|q) fN (x|q) are eigenfunctions of kernel
k with ρn being an eigenvalue related to an eigenfunction Hn (x|q) fN (x|q).
Such kernels and kernel expansions are very important in analysis or quan-
tum physics in the analysis of different models of harmonic oscillators.

In the literature however there is some confusion concerning terminol-
ogy. Sometimes expression of the form

∑
n≥0 anpn(x)pn (y) where {pn} is a

family of polynomials are also called kernels (like in [41])) or even sometimes
‘bilinear generating function’ (see e.g. [26])) or also Poisson kernels. If pn (y)
is replaced with qn (y) then we deal with the non-symmetric kernel.

The process of expressing these sums in a closed form is then called
‘summing of kernels’.

Summing the kernel expansions is difficult. Proving positivity of the
kernels is another difficult problem. Only some are known and have relatively
simple forms. In most cases sums are in the form of a complex finite sum of
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the so called basic hypergeometric functions. Below, we will present several
of them. Mostly the ones involving the big q-Hermite, Al-Salam–Chihara
and q-ultraspherical polynomials.

To present more complicated sums we will need the following definition
of the basic hypergeometric function namely

(4.3) jφk

[
a1 a2 . . . aj

b1 b2 . . . bk
; q, x

]
=
∞∑
n=0

(a1, . . . , aj)

(b1, . . . , bk)

(
(−1)n q(

n
2)
)1+k−j

xn,

(4.4) 2mW2m−1 (a, a1, . . . , a2m−3; q, x)

= 2mφ2m−1

[
a q
√
a −q

√
a a1 a2 . . . a2m−3√

a −
√
a qa

a1
qa
a2
. . . qa

a2m−3

; q, x

]
.

We will now present the kernels built of families of polynomials that are
discussed here and their sums.

Theorem 2. i) For all |t| < 1, |x|, |y| < 2:

∞∑
n=0

tnUn (x/2)Un (y/2) =

(
1− t2

)(
(1− t2)2 − t (1 + t2)xy + t2(x2 + y2)

) .
ii) For all |t| < 1, |x|, |y| < 1:

∞∑
n=0

(1−βqn) (q)n
(1−β) (β2)n

tnCn (x|β, q)Cn (y|β, q) =
(βq)2∞

(β2)∞ (βt2)∞

∞∏
n=0

w (x, y|tβqn)

w (x, y|tqn)

×8W7

(
βt2

q
,
β

q
, tei(θ+φ), te−i(θ+φ), tei(θ−φ), te−i(θ−φ); q, βq

)
,

where x = cos θ, y = cosφ.
iii) For all |x|, |y|, |t|, |tb/a| ≤ 1:

(4.5)
∑
n≥0

(tb/a)n

(q)n
hn (x|a, q)hn (y|b, q) =

(
b2t2

a2

)
∞

∞∏
k=0

v
(
x|tbqk

)
w
(
x, y|t baqk

)
× 3φ2

(
t btei(θ+φ)/a btei(−θ+φ)/a

b2t2/a2 bteiφ
; q, be−iφ

)
,

with x = cos θ and y = cosφ.
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iv) For all |t| < 1, x, y ∈ S(q), ab = αβ:∑
n≥0

(tα/a)n

(q)n (ab)n
Qn (x|a, b, q)Qn (y|α, β, q)

=

(
α2t2

a , α
2t
a e

iθ, be−iθ, bteiθ, αte−iφ, αteiφ
)
∞(

ab, α
2t2

a eiθ
)
∞

∏∞
k=0w

(
x, y|αta qk

)
× 8W7

(
α2t2eiθ

aq
, t,

αt

β
, aeiθ,

αt

a
ei(θ+φ),

αt

a
ei(θ−φ); q, be−iθ

)
,

where as before x = cos θ and y = cosφ and∑
n≥0

tn

(q)n (ab)n
Qn (x|a, b, q)Qn (y|α, β, q)

=

(
βt
a

)
∞

(αat)∞

∞∏
k=0

(1 + α2t2q2k)2 − 2αtqk (x+ y)
(
1 + α2t2q2k

)
+ 4α2xyt2q2k

w (x, y|tqk)

× 8W7

(
αat

q
,
αt

b
, aeiθ, ae−iθ, αeiφ, αe−iφ; q;

βt

a

)
.

v) For all |ρ1|, |ρ2|, |q| < 1, x, y ∈ S (q)

0 ≤
∑
n≥0

ρn1
[n]q!

(
ρ22
)
n

Pn (x|y, ρ2, q)Pn
(
z|y, ρ2

ρ1
, q

)
(4.6)

=

(
ρ21
)
∞(

ρ22
)
∞

∞∏
k=0

Wq

(
x, z|ρ2qk

)
Wq (x, y|ρ1qk)

.

Remarks concerning the proof. i) We set q = 0 in (4.1) and use
(2.15). ii) It is formula (1.7) in [26] based on [15]. iii) It is formula (14.14)
in [41]. iv) These are formulae (14.5) and (14.8) of [41]. v) Notice that
it cannot be derived from assertion iv) since the condition ab = αβ is not
satisfied. Recall that (see (2.26)) ab = ρ22 while αβ = ρ21. For the proof recall
the idea of expansion of ratio of densities presented in [33], use formulae
(3.7) and (2.30) and finally notice that fCN (x|y, ρ1, q) /fCN (x|z, ρ2, q) =
(ρ21)∞
(ρ22)∞

∏∞
k=0

Wq(x,z|ρ2qk)
Wq(x,y|ρ1qk)

.

Corollary 2. For all |a| > |b|, x, y ∈ S(q):

0 ≤
∑
n≥0

bn

[n]q!a
n
Hn (x|a, q)Hn (y|b, q) =

(
b2

a2

)
∞

∞∏
k=0

Vq
(
x|bqk

)
Wq

(
x, y| baqk

) .
Proof. We set t = 0 in (4.5) and assume |b| < |a|. For an alternative simple
proof see [36].
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4.2. Other infinite expansions. In this subsection, we will present some
expansions that can be viewed as reciprocals of some presented above ex-
pansions and also some generalizations of so called Kibble–Slepian formula.

We start with some reciprocals of the expansions obtained above.

4.2.1. Expansions of kernel’s reciprocals

Theorem 3. i) For |q|, |ρ| < 1, x, y ∈ S(q):

1/
∞∑
n=0

ρn

[n]q!
Hn (x|q)Hn (y|q) =

∞∑
n=0

ρn

(ρ2)n [n]q!
Bn (y|q)Pn(x|y, ρ, q).

ii) For x, y ∈ R and ρ2 < 1/2

1/
∞∑
n=0

ρn

n!
Hn(x)Hn (y) =

∞∑
n=0

ρnin

n! (1− ρ2)n/2
Hn (ix)Hn

(
(x− ρy)√

1− ρ2

)
.

iii) For |q| < 1, |a| < |b|, x, y ∈ S(q):

1/
∑
n≥0

an

[n]q!b
n
Hn (x|a, q)Hn (y|b, q)

=
∑
n≥0

an

[n]q!b
n (a2/b2)n

Bn (y|b, q)Pn(x|y, a/b, q).

iv) For |ρ1|, |ρ2|, |q| < 1, x, y ∈ S(q):

1/
∑
n≥0

ρn1
[n]q!

(
ρ22
)
n

Pn (x|y, ρ2, q)Pn
(
z|y, ρ2

ρ1
, q

)
=
∑
n≥0

ρn2
[n]q!

(
ρ21
)
n

Pn (x|z, ρ1, q)Pn
(
y|z, ρ1

ρ2
, q

)
.

Remarks concerning the proof. i) and ii) are proved in [33]. iii) is
proved in [36]. iv) directly follows from (4.6)

4.2.2. Some auxiliary infinite expansions. The result below can be
viewed as summing certain non-symmetric kernel.

Lemma 1. For x, y ∈ S(q), |ρ| < 1 let us denote

γm,k (x, y|ρ, q) =
∞∑
k=0

ρk

[k]q!
Hk+m (x|q)Hk+k(y|q).

Then

(4.7) γm,k (x, y|ρ, q) = γ0,0 (x, y|ρ, q) Ξm,k(x, y|ρ, q),
where Ξm,k is a polynomial in x and y of order at most m+ k.
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Further denote Cn(x, y|ρ1, ρ2, ρ3, q)=
∑n

k=0

[
n
k

]
q
ρn−k1 ρk2Ξn−k,k (x, y|ρ3,q).

Then we have in particular
i) Ξm,k (x, y|ρ, q) = Ξk,m(y, x|ρ, q),

Ξm,k (x, y|ρ, q) =
k∑
s=0

(−ρ)sq(
s
2)
[
k

s

]
q

Hk−s (y|q)Pm+s(x|y, ρ, q)/(ρ2)m+s,

ii) and
(4.8) Cn (x, y|ρ1, ρ2, ρ3, q)

=
n∑
s=0

[
n

s

]
q

Hn−s (y|q)Ps (x|y, ρ3, q) ρn−s1 ρs2 (ρ1ρ3/ρ2)s /
(
ρ23
)
s
.

Proof. Proof that γm,k (x, y|ρ, q) /γ0,0 (x, y|ρ, q) is a polynomial can be de-
duced from [8] (formula 1.4) where the result was formulated for Rogers–
Szegö polynomials. To get the ii) from this result of Carlitz using (2.40) is
not easy. For the alternative, simple although lengthy proof of the general
case and other assertions we refer the reader to [34] and [35].

Exploring Carlitz paper [8] and confronting it with above Lemma 1, we
arrive at the following conversion lemma.

Lemma 2. ∀n,m ≥ 0, |t| < 1, θ ∈ (−π, π]:

(4.9)
m∑
k=0

n∑
l=0

[
m

k

]
q

[
n

l

]
q

(
tei(−θ+η)

)
k

(
tei(θ−η)

)
l

(
te−i(θ+η)

)
k+l

(t2)k+l
e−i(m−2k)θe−i(n−2l)η

=

n∑
j=0

(−1)jq(
j
2)
[
n

j

]
q

tjhn−j(y|q)pm+j (x|y, t, q) /
(
t2
)
j+m

,

with x = cos θ and y = cos η.

Proof. See [38] Proposition 6.

4.2.3. Generalization of Kibble–Slepian formula. Recall that Kibble
in 1949 [21] and independently Slepian in 1972 [30] extended the Poisson–
Mehler formula to higher dimensions, expanding ratio of the standardized
multidimensional Gaussian density divided by the product of one dimen-
sional marginal densities in the multiple sum involving only constants (cor-
relation coefficients) and the Hermite polynomials. The formula in its gen-
erality can be found in [16] (4.7.2 p. 107). Since we are going to generalize
its 3-dimensional version, only this version will be presented here.

Namely let us consider 3-dimensional density f3D (x1, x2, x3; ρ12, ρ13, ρ23)

of Normal random vector N
 0

0
0

 ,
 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

. Of course we must assume
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that the parameters ρ12, ρ13, ρ23 are such that the variance covariance matrix
is positive definite i.e. such that

(4.10) 1 + 2ρ12ρ13ρ23 − ρ212 − ρ213 − ρ223 > 0.

Then Kibble–Slepian formula reads that

exp

(
x21 + x22 + x23

2

)
f3D (x1, x2, x3; ρ12, ρ13, ρ23)

=

∞∑
k,m,m=0

ρk12ρ
m
13ρ

n
23

k!m!n!
Hk+m (x1)Hk+n (x2)Hm+n(x3).

Thus immediate generalization of this formula would be to substitute the
Hermite polynomials by the q-Hermite ones and factorials by the q-factorials.

The question is if such sum is positive. It turns out that not in general
i.e. not for all ρ12, ρ13, ρ23 satisfying (4.10). Nevertheless, it is interesting
to compute the sum

(4.11)
∞∑

k,m,m=0

ρk12ρ
m
13ρ

n
23

[k]q! [m]q! [n]q!
Hk+m (x1|q)Hk+n (x2|q)Hm+n(x3|q).

For simplicity, let us denote this sum by g (x1, x2, x3|ρ12, ρ13, ρ23, q) .
In [37], the following result have been formulated and proved.

Theorem 4. i)

(4.12) g (x1, x2, x3|ρ12, ρ13, ρ23, q)

=

(
ρ213
)
∞∏∞

k=0Wq (x1, x3|ρ13qk)
∑
s≥0

1

[s]q!
Hs (x2|q)Cs (x1, x3|ρ12, ρ23, ρ13, q)

where Cn (x1, x3|ρ12, ρ23, ρ13, q) is given by either (4.8) or can be expressed
in terms of polynomials Hn in the following form:

Cn (x1, x3|ρ12, ρ23, ρ13, q)

=
1(

ρ213
)
n

bn/2c∑
k=0

(−1)kq(
k
2)
[
n

2k

]
q

[
2k

k

]
q

[k]q!ρ
k
12ρ

k
13ρ

k
23

(
ρ12ρ13
ρ23

)
k

(
ρ13ρ23
ρ12

)
k

n−2k∑
j=0

[
n− 2k

j

]
q

ρj23

(
ρ12ρ13
ρ23

qk
)
k

ρn−j−2k12

(
ρ13ρ23
ρ12

qk
)
n−2k−j

Hj(x1|q)Hn−2k−j(x3|q),

similarly for other pairs (1, 3) and (2, 3),
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ii)

(4.13) g (x1, x2, x3|ρ12, ρ13, ρ23, q)

=

(
ρ213, ρ

2
23

)
∞∏∞

k=0Wq (x1, x3|ρ13qk)Wq(x3, x2|ρ23qk)

×
∞∑
s=0

ρs12 (ρ13ρ23/ρ12)s
[s]q!

(
ρ213
)
s

(
ρ223
)
s

Ps (x1|x3, ρ13, q)Ps(x2|x3, ρ23, q),

similarly for other pairs (1, 3) and (2, 3).

Unfortunately, as shown in [37], one can find such ρ12, ρ13, ρ23 that the
function g with these parameters assumes negative values for some xj ∈
S (q), j = 1, 2, 3 hence g (x1, x2, x3|ρ12, ρ13, ρ23, q)

∏3
j=0 fN (xj |q) with these

values of parameters is not a density of a probability distribution.

Remark 2. Notice that if ρ12 = qmρ13ρ23 then the sum in 4.13 is finite,
having only m summands.
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