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ABSTRACT

Here we give a simple proof of a new representation for orthogonal polynomials over
triangular domains which overcomes the need to make symmetry destroying choices to
obtain an orthogonal basis for polynomials of fixed degree by employing redundancy. A
formula valid for simplices with Jacobi weights is given, and we exhibit its symmetries by
using the Bernstein–Bézier form. From it we obtain the matrix representing the orthogonal
projection onto the space of orthogonal polynomials of fixed degree with respect to the
Bernstein basis. The entries of this projection matrix are given explicitly by a multivariate
analogue of the 3F2 hypergeometric function. Along the way we show that a polynomial is
a Jacobi polynomial if and only if its Bernstein basis coefficients are a Hahn polynomial.
We then discuss the application of these results to surface smoothing problems under linear
constraints.
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1. Introduction

This paper considers orthogonal polynomials over a triangular (or simplicial) domain,
with a mind to extending least–squares approximation methods to the multivariate setting
(see the discussion in [FGS03]). In the univariate case these are given by the inner product

〈f, g〉ν :=
Γ(ν0 + ν1)
Γ(ν0)Γ(ν1)

∫ 1

0

f(x)g(x) (1− x)ν0−1xν1−1dx, ν0, ν1 > 0

with those for νj=1 (Legendre polynomials) and νj = 1
2

(Chebyshev polynomials),
i.e.,

〈f, g〉(1,1) =
∫ 1

0

f(x)g(x) dx, 〈f, g〉(1
2 , 12 ) =

1
π

∫ 1

0

f(x)g(x)
dx√

1− x2
,

the most relevant to least–squares methods. The linear polynomials ξ0(x) := 1 − x and
ξ1(x) := x above are the barycentric coordinates of the interval (1–simplex) T = [0, 1].

For polynomials of d variables the interval [0, 1] is replaced by a d–simplex T (a triangle
for d = 2) with barycentric coordinates ξ = (ξ0, ξ1, . . . , ξd), to obtain the inner product

〈f, g〉ν :=
Γ(|ν|)
Γ(ν)

1
d! vold(T )

∫
T

fg ξν−1, ν ∈ IRd+1, νj > 0. (1.1)

Let Πs(IRd) be the space of polynomials of degree ≤ s on IRd. Then Pν
s the Jacobi

polynomials of degree s is defined to be the space of polynomials f of degree s with

〈f, g〉ν = 0, ∀g ∈ Πs−1(IRd).

In the univariate case (d = 1) this space is one dimensional, spanned by the orthogonal
projection of any polynomial of exact degree s onto it. The issues here are the choice of an
appropriate normalisation to give a neat form of the three term recurrence, and expressing
the orthogonal polynomial in terms of a (2F1) hypergeometric function.

In the bivariate (and multivariate) case dim(Pν
s ) =

(
s+d−1

d−1

)
> 1, d > 1, s > 0, and so

some orthogonal–type expansion must be developed for it (see, e.g., [DX01]). Let’s consider
the issues involved here in the concrete case of the bivariate (d = 2) quadratic (s = 2)
Legendre (νj = 1) polynomials on the standard triangle T := {(x, y) : x, y ≥ 0, x + y ≤ 1},
which has barycentric coordinates x, y, 1− x − y. A natural candidate for an orthogonal
basis would be the orthogonal projection of the Bernstein basis

x2, y2, (1− x− y)2, 2xy, 2x(1− x− y), 2y(1− x− y)

onto Q the space of quadratic Legendre polynomials, since these Legendre polynomials are
invariant under the symmetries of the weight (the affine changes of variables which map the
triangle T to itself). But there are six of these functions and Q has dimension three! What
can one do? Appell [AK26] suggests taking a subset: those corresponding to x2, y2, 2xy
(those not involving one of the barycentric coordinates). These are not orthogonal to each
other: but they are invariant under a subgroup of the symmetries of the weight – enough

1



to develop general formula for them and the dual basis. Proriol [P57] suggests giving up
on having any symmetries and obtains an orthogonal basis explicitly. The cost is that the
(recursive) formulae are very complicated, and so of limited utility for computations. Here
Prorial’s polynomials are the orthogonal projections of x2 +y2 +2xy, x2−y2, x2−y2−4xy
onto Q.

In this paper we advocate a new approach: to write f ∈ Q as a sum of its orthogonal
projections onto all six functions. The resulting formula is what is called a tight frame
expansion (see [C03]). It has a simple form since, e.g., the orthogonal projections of
x2, y2, (1 − x − y)2 are obtained from each other by applying a symmetry of the weight
(interchanging barycentric coordinates). We advocate that having a simple formula which
reflects the symmetries of the weight and so allows stable calculations (see [F00]) outweighs
the cost of dealing with more functions than needed for a basis.

The paper is set out as follows. In the remainder of this section we give some basic
definitions and facts. In Section 2, we investigate the Bernstein–Bézier coefficients of Jacobi
polynomials. It turns out that these are Hahn polynomials and can be characterised by
certain dependencies of the coefficients which can be expressed in terms of the adjoint of
the degree elevation operator. In Section 3, we give a tight frame representation for the
space of Jacobi polynomials which reflects the symmetries of the weight and discuss its use.
The proof given is based on the fact that the Jacobi polynomials are eigenfunctions of the
Bernstein–Durrmeyer operator. We conclude by presenting some additional consequences
of the results including their application to surface smoothing problems.

Throughout ξ = (ξ0, ξ1, . . . , ξd) will be the barycentric coordinates of a d–simplex
T ⊂ IRd (the convex hull of d + 1 affinely independent points in IRd) with volume vold(T ).
We use standard multiindex notation, e.g., in (1.1) we have ξν−1 = ξν0−1

0 ξν1−1
1 · · · ξνd−1

d ,
|ν| = ∑

j νj and Γ(ν) =
∏

j Γ(νj). The normalisation is chosen so that

〈ξα, ξβ〉ν =
(ν)α+β

(|ν|)|α|+|β|
, α, β ∈ ZZd+1

+ , (1.2)

where (ν)α :=
∏

j(νj)αj
, with (x)n := x(x + 1) · · · (x + n− 1) the Pochhammer symbol.

Each polynomial f ∈ Πn(IRd) can be expressed in terms of the Bernstein basis

f =
∑
|α|=n

cα(f)Bα =
∑
|α|=n

cαBα,

where the Bernstein polynomials of degree n are defined by

Bα :=
(|α|

α

)
ξα =

|α|!
α!

ξα =
n!
α!

ξα, |α| = n, α ∈ ZZd+1
+ .

This basis for Πn(IRd) is ideally suited to representing polynomials on the simplex T
(see [B87]), and c(f) = cn(f) = (cα)|α|=n are referred to as the Bernstein(–Bézier)
coefficients. By the multinomial theorem

f =
∑
|α|=n

cαBα =
∑
|α|=n

cαBα

( d∑
i=0

ξi

)j

=
∑

|α|=n+j

(Rjc)αBα,
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where the powers of the degree raising operator R are given by

(Rjc)α =
∑
|γ|=j

(
j

γ

)
(−α)γ

(−|α|)j
cα−γ , j = 0, 1, 2, . . . . (1.3)

2. Jacobi polynomials and their Bernstein coefficients

Here we think of functions c : α 7→ cα defined on the simplex points

Sn := {α ∈ ZZd+1
+ : |α| = n},

such as the Bernstein coefficients of f ∈ Πn(IRd), as polynomials of degree n in d–variables.
This is done by identifying c with the unique polynomial of degree n on the d–dimensional
affine subspace {x ∈ IRd+1 : x0 + x1 + · · ·+ xd = n} which takes the value cα at α ∈ Sn.
For example, by the multinomial theorem f = 1 =

∑
|α|=n Bα, and so 1 corresponds to

the constant polynomial c : α 7→ 1. More generally we have:

Proposition 2.1. Let f =
∑

|α|=n cαBα ∈ Πn(IRd) and 0 ≤ s ≤ n. Then f has degree s
if and only if c : α 7→ cα is a polynomial of degree s.

Proof: The polynomials Bβ, |β| = s, are a basis for Πs(IRd), and can be expressed

Bβ =
∑
|α|=s

bαBα, bα :=
{

1, α = β;
0, otherwise.

Let j := n− s. Then by (1.3) the Bernstein coefficients of Bβ =
∑

|α|=n cαBα are

cα = (Rjb)α =
∑
|γ|=j

(
j

γ

)
(−α)γ

(−|α|)j
bα−γ =

j!
(α− β)!

(−α)α−β

(−n)j
=

j!(−1)j

(−n)j

(−α)β

(−β)β

since (−α)α−β(−β)β = (−α)β(−α + β)α−β and (α− β)! = (−1)j(−α + β)α−β .
But Sn → IR : α 7→ (−α)β , |β| = s are a basis for the space of polynomials of degree

s, and so we obtain the stated correspondence.

We define an inner product on the space of polynomials Sn → IR of degree n by

〈f, g〉ν,n :=
∑
|α|=n

(ν)α

α!
f(α)g(α). (2.2)

The corresponding orthogonal polynomials of degree s are called Hahn polynomials, and
we denote the space of them by Pν,n

s , 0 ≤ s ≤ n. We now show that a polynomial is a
Jacobi polynomial if and only if its Bernstein coefficients are a Hahn polynomial.
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Theorem 2.3. Let f =
∑

|α|=n cαBα ∈ Πn(IRd) and 0 ≤ s ≤ n. Then f ∈ Pν
s if and only

if c ∈ Pν,n
s , i.e., c : α 7→ cα is a polynomial of degree s, and

〈c, p〉ν,n =
∑
|α|=n

(ν)α

α!
cαp(α) = 0,

for all polynomials p : Sn → IR of degree < s.

Proof: f ∈ Pν
s if and only if it is orthogonal to the spanning set g = ξβ, |β| < s

for Πs−1(IRd), i.e., by (1.2)

〈f, g〉ν =
∑
|α|=n

cα
n!
α!

(ν)α+β

(|ν|)|α|+|β| =
n!

(|ν|)s+|β|

∑
|α|=n

(ν)α

α!
cα(ν + α)β = 0.

The result follows since p : α 7→ (ν + α)β , |β| < s span the space of polynomials of degree
< s.

This interpretation of the Hahn polynomials as the Bernstein coefficients of the Jacobi
polynomials was found by [Ci87] in the univariate case. By choosing specific p the condition
on the Bernstein coefficients can be related to R∗

ν the adjoint of the degree raising operator
with respect to (2.2), which is defined by

〈Rc, b〉ν,n = 〈c, R∗
νb〉ν,n−1, c : Sn−1 → IR, b : Sn → IR.

Choose 0 ≤ j ≤ n. Then for c : Sn−j → IR and b : Sn → IR we calculate

〈Rjc, b〉ν,n =
∑
|α|=n

(ν)α

α!
(Rjc)αbα =

∑
|α|=n

(ν)α

α!

∑
|γ|=j

(
j

γ

)
(−α)γ

(−|α|)j
cα−γbα

=
∑

|β|=n−j

∑
|γ|=j

(ν)β+γ

(β + γ)!

(
j

γ

)
(−β − γ)γ

(−n)j
cβbβ+γ

=
∑

|β|=n−j

(ν)β

β!
cβ

∑
|γ|=j

β!
(ν + β)γ

(β + γ)!

(
j

γ

)
(−β − γ)γ

(−n)j
bβ+γ ,

and so the powers of the adjoint of R are given by

((R∗
ν)jb)β =

∑
|γ|=j

β!
(ν + β)γ

(β + γ)!

(
j

γ

)
(−β − γ)γ

(−n)j
bβ+γ =

∑
|γ|=j

(ν + β)γ

(
j

γ

)
(−1)j

(−n)j
bβ+γ

=
∑
|γ|=j

(β + ν)γ

(|β|+ 1)j

(
j

γ

)
bβ+γ

(2.4)

Corollary 2.5. Let f =
∑

|α|=n cαBα ∈ Πn(IRd), 0 ≤ s ≤ n. Then f ∈ Pν
s if and only if

(R∗
ν)n−s+1c = 0.
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Proof: Take p : α 7→ (−α)β , |β| = s − 1 which are a basis for the space of
polynomials of degree < s. With k := n− |β| = n− s + 1, we calculate

〈c, p〉ν,n =
∑
|α|=n

(ν)α

α!
cα(−α)β =

∑
|α|=n
α≥β

(ν)α

α!
cα(−α)β =

∑
|γ|=k

(ν)β+γ

(β + γ)!
cβ+γ(−β − γ)β

= (ν)β

∑
|γ|=k

(ν + β)γcβ+γ
(−β − γ)β

(β + γ)!
= (ν)β

∑
|γ|=k

(ν + β)γcβ+γ
(−1)|β|

γ!

= (ν)β
(−1)s−1

k!
(s)k

∑
|γ|=k

(ν + β)γ

(|β|+ 1)k
cβ+γ

k!
γ!

= (ν)β(−1)s−1

(
n

s− 1

)
((R∗

ν)kc)β ,

which is zero for all |β| = s− 1 if and only if (R∗
ν)kc = 0.

For Legendre polynomials (νj = 1) and s = n this result appears as Lemma 7 in [FGS03].
The association of the (possibly degree raised) Bernstein coefficients of f ∈ Pν

s with
a Hahn polynomial preserves the respective inner products.

Theorem 2.6. Let f =
∑

|α|=n cα(f)Bα, g =
∑

|α|=n cα(g)Bα and 0 ≤ s ≤ n. If f or g
belongs to Pν

s , then we have

〈f, g〉ν =
(n!)2

(n− s)!(|ν|)n+s

∑
|α|=n

(ν)α

α!
cα(f)cα(g) =

(n!)2

(n− s)!(|ν|)n+s
〈c(f), c(g)〉ν,n.

Proof: We will use the multivariate Chu–Vandermonde identity (see [DX01:§1.2])
in the form

(ν)α+β

(ν)α(ν)β
=

(ν + β)α

(ν)α
= 2F1(−α,−β; ν; 1) =

∑
γ

(−α)γ(−β)γ

(ν)γγ!
.

Suppose without loss of generality that f ∈ Pν
s , and write

f =
∑
|α|=s

aαBα, g =
∑
|β|=n

bβBβ ,

i.e., c(f) = Rn−sa, c(g) = b. Then by (1.2) and Chu-Vandermonde

〈f, g〉ν = s!n!
∑
|α|=s

∑
|β|=n

aα

α!
bβ

β!
(ν)α+β

(|ν|)s+n

=
s!n!

(|ν|)n+s

∑
|α|=s

∑
|β|=n

aα

α!
bβ

β!
(ν)α(ν)β

∑
γ

(−α)γ(−β)γ

(ν)γγ!

=
s!n!

(|ν|)n+s

∑
|α|=s

(ν)α

α!
aα

∑
|β|=n

(ν)β

β!
bβ

∑
γ≤α
γ≤β

(−α)γ(−β)γ

(ν)γγ!
.
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Since p : α 7→ (−α)γ is a polynomial of degree |γ| ≤ s (γ ≤ α), Theorem 2.3 (with n = s)
implies that all terms except those with γ = α vanish, and so we obtain

〈f, g〉ν =
s!n!

(|ν|)n+s

∑
|α|=s

(ν)α

α!
aα

∑
|β|=n

(ν)β

β!
bβ

(−α)α(−β)α

(ν)αα!

=
s!n!

(|ν|)n+s

∑
|β|=n

(ν)β

β!
bβ

∑
|α|=s
α≤β

aα
(−β)α

(−α)α
.

Let j := n− s. Since (−β)β−α(−α)α = (−β)α(−β + α)β−α, the last sum above becomes

∑
|α|=s
α≤β

aα
(−β)α

(−α)α
=

∑
|α|=s
α≤β

aα
(−β)β−α

(−(β − α))β−α
=

∑
|γ|=j

aβ−γ
(−β)γ

(−γ)γ

=
(−1)j

j!

∑
|γ|=j

(
j

γ

)
(−β)γaβ−γ =

(−1)j

j!
(−n)j(Rja)β =

n!
s!(n− s)!

cβ(f),

and we obtain the result.

For Legendre polynomials (νj = 1) this is Lemma 6 of [FGS03].

Corollary 2.7. Let f =
∑

|α|=j cj
α(f)Bα, g =

∑
|α|=k ck

α(g)Bα. If f or g belongs to Pν
s ,

where s ≤ max{j, k} ≤ n, then

〈f, g〉ν =
(n!)2

(n− s)!(|ν|)n+s
〈Rn−jcj(f), Rn−kck(g)〉ν,n.

3. Tight frames with symmetries for the Jacobi polynomials

A tight frame for a finite dimensional Hilbert space H, such as Pν
s , is a sequence of

vectors (φj) in H for which

f =
∑

j

〈f, φj〉φj , ∀f ∈ H. (3.1)

Clearly an orthonormal basis is a tight frame. There do exist tight frames with more
vectors than needed for a basis, e.g., three equally spaced vectors in IR2 (see, e.g., [D92]).

Proriol’s orthonormal basis for Pν
s involved complicated formulae since the symmetries

of Pν
s were not utilised. Here we give a tight frame for Pν

s which does have the natural
symmetries, and hence has a simple form. Since (3.1) is technically similar to an orthogonal
expansion – it simply has more terms – we feel this is a worthwhile advance.
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The simple construction (which eluded the author for years) given here is based on
the Bernstein–Durrmeyer operator Mν

n (see [Du67], [De85]). This is defined on the
continuous functions on the simplex T with the Jacobi inner product (1.1) by

Mν
nf :=

∑
|α|=n

〈f, ξα〉ν
〈1, ξα〉ν Bα =

∑
|α|=n

〈f, ξα〉ν (|ν|)n

(ν)α

n!
α!

ξα.

It is easily shown this is self adjoint and (see [De85]) that it has eigenvalues

λs(Mν
n) =

n!
(n− s)!

1
(n + |ν|)s

, 0 ≤ s ≤ n,

with corresponding eigenspace the space of Jacobi polynomials Pν
s , i.e., for 0 ≤ s ≤ n

f = (n− s)!(|ν|)n+s

∑
|α|=n

1
α!

ξα

(ν)α
〈f, ξα〉ν , ∀f ∈ Pν

s . (3.2)

Let Qs be the orthogonal projection onto Pν
s . Then for f ∈ Pν

s ,

〈f, ξα〉ν = 〈Qsf, ξα〉ν = 〈f, Qs(ξα)〉ν ,

and so from (3.2) we obtain

f = (n−s)!(|ν|)n+s

∑
|α|=n

1
α!

ξα

(ν)α
〈f, Qs(ξα)〉ν = (n−s)!(|ν|)n+s

∑
|α|=n

(ν)α

α!
Qs(ξα)
(ν)α

〈f,
Qs(ξα)
(ν)α

〉ν .

(3.3)
Thus by computing Qs(ξα) explicitly, we obtain the desired tight frame for Pν

s .

Lemma 3.4. Suppose that |α| = n. Then for any index γ,

∑
|θ|=s

(−α)θ(−θ)γ

θ!
= (−1)s n!

s!(n− s)!
(−α)γ

(−s)|γ|
(−n)|γ|

.

Proof: The terms in the sum are nonzero only if γ ≤ θ ≤ α. Hence the result
holds for γ 6≤ α, and it suffices to prove it for the case γ ≤ α.

Suppose that γ ≤ α. For γ ≤ θ ≤ α,

(−θ)γ = (−1)|γ|θ!/(θ− γ)!, (−α)θ = (−α)γ(−α + γ)θ−γ,

and so, by the multinomial theorem, we have

∑
|θ|=s

(−α)θ(−θ)γ

θ!
=

∑
|θ|=s

γ≤θ≤α

(−α)θ(−θ)γ

θ!
=

(−1)|γ|(−α)γ

(s− |γ|)!
∑
|θ|=s

γ≤θ≤α

(s− |γ|)!
(θ − γ)!

(−α + γ)θ−γ

=
(−1)|γ|(−α)γ

(s− |γ|)! (−n + |γ|)s−|γ|.
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Furthermore, since |γ| ≤ |θ| = s ≤ |α| = n,

(s− |γ|)! = (−1)s−|γ|(−s + |γ|)s−|γ|,
(−n + |γ|)s−|γ|
(−s + |γ|)s−|γ|

=
(−n)s

(−s)s

(−s)|γ|
(−n)|γ|

,

and so we can rearrange this to obtain

∑
|θ|=s

(−α)θ(−θ)γ

θ!
= (−1)s(−α)γ

(−n)s

(−s)s

(−s)|γ|
(−n)|γ|

= (−1)s n!
s!(n− s)!

(−α)γ

(−s)|γ|
(−n)|γ|

.

This completes the proof.

Theorem 3.5 (Tight frame for Pν
s ). Let n ≥ s. A tight frame for Pν

s is given by

f = (n− s)!(|ν|)n+s

∑
|α|=n

(ν)α

α!
〈f, φν,s

α 〉νφν,s
α , ∀f ∈ Pν

s , (3.6)

where

φν,s
α :=

(−1)s

(s + |ν| − 1)s

(
n
s

)
(|ν|+ 2s)n−s

∑
β≤α
|β|≤s

(s + |ν| − 1)|β|(−α)β(−s)|β|
(ν)β(−n)|β|

ξβ

β!
(3.7)

is the orthogonal projection of ξα/(ν)α onto Pν
s . We also have

f =
(n− s)!

n!
(|ν|)n+s

∑
|α|=n

〈f, φν,s
α 〉νBα, ∀f ∈ Pν

s . (3.8)

Proof: It suffices to prove φν,s
α is the orthogonal projection of ξα/(ν)α onto Pν

s ,
since then (3.3) gives (3.6) and (3.8).

First we prove this for |α| = n = s. In this case

φν
α := φν,|α|

α :=
(−1)s

(s + |ν| − 1)s

∑
β≤α

(s + |ν| − 1)|β|(−α)β

(ν)β

ξβ

β!
∈ ξα

(ν)α
+ Πs−1(IRd). (3.9)

For |γ| = s− 1, (|ν|)|β|+|γ| = (|ν|)s−1(|ν|+ s− 1)|β|, (ν)β+γ = (ν)γ(ν + γ)β, and so

〈φν
α, ξγ〉ν =

(−1)s

(s + |ν| − 1)s

∑
β≤α

(s + |ν| − 1)|β|(−α)β

(ν)ββ!
(ν)β+γ

(|ν|)|β|+|γ|

=
(−1)s

(s + |ν| − 1)s

(ν)γ

(|ν|)s−1

∑
β≤α

(−α)β

(ν)ββ!
(ν + γ)β.

By Chu–Vandermonde the last sum above equals (−γ)α/(ν)α = 0, so φν
α is orthogonal to

the basis {ξγ : |γ| = s−1} for Πs−1(IRd), and hence is the orthogonal projection supposed.
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Now we prove the result for |α| = n ≥ s. By (3.8) for n = s (the case just proved), it
follows that Qs the orthogonal projection onto Pν

s is given by

Qsf =
(|ν|)2s

s!

∑
|β|=s

〈Qsf, φν
β〉νBβ =

(|ν|)2s

s!

∑
|β|=s

〈f, φν
β〉νBβ, ∀f.

In particular,

Qs(ξα)
(ν)α

=
(|ν|)2s

s!

∑
|β|=s

〈 ξα

(ν)α
, φν

β〉νBβ =
(|ν|)2s

s!
1

(ν)α

∑
|β|=s

〈ξα, φν
β〉νBβ . (3.10)

Let f = ξα = α!
n!Bα, |α| = n, g = φν

β =
∑

|θ|=s cθBθ, |β| = s in Corollary 2.7, to obtain

〈ξα, φν
β〉ν =

(n!)2

(n− s)!(|ν|)n+s
〈α!
n!

δα, Rn−sc〉ν,n =
(n!)2

(n− s)!(|ν|)n+s

α!
n!
〈(R∗

ν)n−sδα, c〉ν,s.

(3.11)
We therefore need to calculate ((R∗

ν)n−sδα)θ and cθ, |θ| = s. By (2.4), we have

((R∗
ν)jδα)β =

{
(β+ν)α−β

(|β|+1)j

j!
(α−β)! , β ≤ α;

0 otherwise
=

(ν)α

(ν)β

j!
(|β|+ 1)j

(−1)|β|(−α)β

α!
,

so that

((R∗
ν)n−sδα)θ =

(ν)α

(ν)θ

(n− s)!s!
n!

(−1)s(−α)θ

α!
, |θ| = s. (3.12)

To obtain the Bernstein form φν,s
α =

∑
|β|=m cν,s

α,βBβ, m ≥ s, use the multinomial theorem
to expand (3.7)

φν,s
α =

(−1)s

(s + |ν| − 1)s

(
n
s

)
(|ν|+ 2s)n−s

∑
γ≤α
|γ|≤s

(s + |ν| − 1)|γ|(−α)γ(−s)|γ|
(ν)γ(−n)|γ|

ξγ

γ!

∑
|δ|=m−|γ|

(m− |γ|)!
δ!

ξδ.

The terms in ξβ, |β| = m (β = γ + δ) sum to

(−1)s

(s + |ν| − 1)s

(
n
s

)
(|ν|+ 2s)n−s

∑
γ≤α,β
|γ|≤s

(s + |ν| − 1)|γ|(−α)γ(−s)|γ|
(ν)γ(−n)|γ|

ξγ

γ!
(m− |γ|)!
(β − γ)!

ξβ−γ

Since
1

(β − γ)!
= (−1)|γ|

(−β)γ

β!
, γ ≤ β, (m− |γ|)! = (−1)|γ|

m!
(−m)|γ|

,

this becomes

(−1)s

(s + |ν| − 1)s

(
n
s

)
(|ν|+ 2s)n−s

∑
γ≤α,β
|γ|≤s

(s + |ν| − 1)|γ|(−α)γ(−β)γ(−s)|γ|
(ν)γ(−n)|γ|(−m)|γ|γ!

m!
β!

ξβ,
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i.e.,

cν,s
α,β =

(−1)s

(s + |ν| − 1)s

(|α|
s

)
(|ν|+ 2s)|α|−s

∑
γ≤α,β
|γ|≤s

(s + |ν| − 1)|γ|(−α)γ(−β)γ(−s)|γ|
(ν)γ(−|α|)|γ|(−|β|)|γ|γ!

. (3.13)

As a particular case, we have

cθ = cν,s
β,θ =

(−1)s

(s + |ν| − 1)s

∑
γ≤β,θ
|γ|≤s

(s + |ν| − 1)|γ|(−β)γ(−θ)γ

(ν)γ(−s)|γ|γ!
, |θ| = s. (3.14)

Combining (3.11), (3.12) and (3.14), we obtain

〈ξα, φν
β〉ν =

s!
(|ν|)n+s

(ν)α

(s + |ν| − 1)s

∑
|θ|=s

(−α)θ

θ!

∑
γ≤β
|γ|≤s

(s + |ν| − 1)|γ|(−β)γ(−θ)γ

(ν)γ(−s)|γ|γ!

=
s!

(|ν|)n+s

(ν)α

(s + |ν| − 1)s

∑
γ≤β
|γ|≤s

(s + |ν| − 1)|γ|(−β)γ

(ν)γ(−s)|γ|γ!

∑
|θ|=s

(−α)θ

θ!
(−θ)γ.

(3.15)

By Lemma 3.4,∑
|θ|=s

(−α)θ(−θ)γ

θ!
=

∑
|θ|=s

γ≤θ≤α

(−α)θ(−θ)γ

θ!
= (−1)s

(
n

s

)
(−α)γ

(−s)|γ|
(−n)|γ|

. (3.16)

So by (3.10), (3.15) and (3.16), the Bβ–Bernstein coefficient (|β| = s) of the orthogonal
projection of ξα/(ν)α onto Pν

s is

(|ν|)2s

s!
1

(ν)α
〈ξα, φν

β〉ν =
(−1)s

(s + |ν| − 1)s

(|ν|)2s

(|ν|)n+s

(
n

s

) ∑
γ≤α,β
|γ|≤s

(s + |ν| − 1)|γ|(−α)γ(−β)γ

(ν)γ(−n)|γ|γ!
.

This equals the corresponding Bernstein coefficient cν,s
α,β given by (3.13), and so φν,s

α is the
orthogonal projection of ξα/(ν)α onto Pν

s as claimed.

The tight frame (3.6) and the representation (3.8) have the desired symmetries. For
applications one would use the tight frame with the smallest number of vectors, i.e., that
for n = s , which simplifies to

f = (|ν|)2s

∑
|α|=s

(ν)α

α!
〈f, φν

α〉νφν
α =

(|ν|)2s

s!

∑
|α|=s

〈f, φν
α〉νBα, ∀f ∈ Pν

s ,

where

φν
α := φν,|α|

α =
(−1)s

(s + |ν| − 1)s

∑
β≤α
|β|≤s

(s + |ν| − 1)|β|(−α)β

(ν)β

ξβ

β!
, |α| = s. (3.17)
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For example, in the univariate case, with ξ(x) = (1− x, x) the barycentric coordinates for
the interval [0, 1] and α = (j, s− j), 0 ≤ j ≤ s, (3.17) becomes

φ
(ν0,ν1)
(j,s−j)(x) =

(−1)s

(s + ν0 + ν1 − 1)s

∑
β0≤j

β1≤s−j

(s + ν0 + ν1 − 1)β0+β1(−j)β0(j − s)β1

(ν0)β0(ν1)β1

(1− x)β0xβ1

β0!β1!
.

This was (with hindsight) easily proved, and can also be proved using [X05:Cor. 5.8].
The sum in (3.17) is a multivariate generalisation of the 2F1 hypergeometric function

called the Lauricella function of type A (see [DX01:§1.2]). In the univariate case (3.17)
reduces to the usual formula for Jacobi polynomials. The history of Theorem 3.5 is as
follows. The case n = s was proved in [WX01] (unpublished) and is closely connected with
results in [R99] (see [RW04]). The simple proof is new, as are the formulas involving the
Bernstein form.

From (3.13) in the proof we have the following.

Corollary 3.18 (Bernstein form of φν,s
α ). The projection of ξα/(ν)α, |α| = n onto Pν

s

can be written
φν,s

α =
∑
|β|=m

cν,s
α,βBβ, s ≤ m ≤ n,

where

cν,s
α,β =

(−1)s

(s + |ν| − 1)s

(
n
s

)
(|ν|+ 2s)n−s

∑
γ≤α,β
|γ|≤s

(s + |ν| − 1)|γ|(−α)γ(−β)γ(−s)|γ|
(ν)γ(−n)|γ|(−m)|γ|γ!

.

Since Πn(IRd) is the orthogonal direct sum ⊕n
s=0Pν

s , we obtain the following tight
frame.

Corollary 3.19 (Tight frame for Πn). A tight frame for Πn(IRd) with 〈·, ·〉ν is given
by

f =
n∑

s=0

(|ν|)2s

∑
|α|=s

(ν)α

α!
〈f, φν

α〉νφν
α ∈

n⊕
s=0

Pν
s , ∀f ∈ Πn(IRd), (3.20)

where 〈φν
α, φν

β〉ν = 0, |α| 6= |β|.
Theorem 3.21 (Projection matrix). The matrix A = (aαβ) that maps the Bernstein
coefficients of f =

∑
|β|=n cβBβ to those of Qsf =

∑
|α|=m(Ac)αBα its projection onto Pν

s

is given by

aαβ = n!
(ν)β

β!
cν,s
β,α, |α| = m ≥ s, |β| = n.

Proof: Since Qs(Bβ) = (n!/β!)(ν)βφν,s
β , Corollary 3.18 gives

Qsf = n!
∑
|β|=n

(ν)β

β!
cβφν,s

β = n!
∑
|β|=n

(ν)β

β!
cβ

∑
|α|=m

cν,s
β,αBα =

∑
|α|=m

( ∑
|β|=n

n!
(ν)β

β!
cν,s
β,α cβ

)
Bα.
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For m = s, the entries of the matrix A are given by a multivariate analogue of the
3F2 hypergeometric function.

Since (φν,s
α )|α|=n spans Pν

s , the orthogonal projection of f =
∑

|β|=n cβBβ onto Pν
s

can be expressed

Qsf =
∑
|α|=n

(ν)α

α!
bαφν,s

α ,

where, by (3.6) and a result from the theory of frames, the unique coefficients b = (bα)
with the minimal `2–norm are given by

bα = (n− s)!(|ν|)n+s〈f, φν,s
α 〉ν = (n− s)!(|ν|)n+s

∑
|β|=n

〈Bβ, φν,s
α 〉νcβ.

There is a simpler choice for the coefficients bα which gives the projection.

Corollary 3.22. The orthogonal projection of f =
∑

|α|=n cαBα ∈ Πn(IRd) onto Pν
s ,

0 ≤ s ≤ n, is given by

Qsf = n!
∑
|α|=n

(ν)α

α!
cαφν,s

α . (3.23)

Proof: Apply Qs to f =
∑

|α|=n cαBα.

Since 〈Bβ, φν,s
α 〉ν 6= 0, |α| = |β| = n, (3.23) is not the tight frame representation of (3.6).

4. Applications and further results

Here we apply our results to a surface “smoothing” problem considered in [FGS03]
(where the Bernstein form of the Prorial basis was used). We adapt the notation used there.
Consider a triangular surface patch of total degree n, expressed both in the Bernstein basis
and the tight frame (3.20),

f =
∑
|α|=n

pαBα =
n∑

s=0

(|ν|)2s

∑
|β|=s

(ν)β

β!
〈f, φν

β〉νφν
β =

n∑
s=0

∑
|β|=s

qs
βφν

β

Using Corollary 3.18, the coefficients (pα) can be computed from (qs
β). But since (φs

β) is
not a basis there is not a unique choice for a given f . To get a uniqueness we require that
qs
β be the coefficients given by (3.20), i.e., (|ν|)2s(ν)β〈f, φν

β〉ν/β! = qs
β , which simplifies to

(|ν|)2s
(ν)β

β!

∑
|α|=s

〈φν
α, φν

β〉νqj
α = qs

β , |β| = s, 0 ≤ s ≤ n. (4.1)
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Notice that these equations have dependencies (which allows a system with the natural
symmetries). Assume M linear interpolation conditions have been prescribed

λj(f) =
n∑

s=0

∑
|β|=s

λj(φn
β)qs

β = aj , 1 ≤ j ≤ M, (4.2)

e.g., specifying the boundary curves. Then the remaining degrees of freedom are used to
minimise a “surface smoothness” integral

J(qj
β : |β| = j, 0 ≤ j ≤ s) :=

∫
T

Ψ(f) ξν−1,

where Ψ(f) is quadratic in f and its derivatives. The orthogonality 〈φν
α, φν

β〉ν , |α| 6= |β|
ensures that the system of equations obtained from the method of Lagrange multipliers
takes a simple form (cf [FGS03]). The resulting “smoothest” surface obtained is the same
as that in [FGS03], with our calculation treating all vertices equally.

It follows from Corollary 2.7 that repeated applications of R and R∗
ν to the Bernstein

coefficients of a Jacobi polynomial take a simple form.

Theorem 4.3. Let f =
∑

|α|=n cαBα ∈ Pν
s , n ≥ s. For j, k ≥ 0 with n + k − j ≥ 0,

(R∗
ν)jRkc =

(n− s + k − j + 1)j

(n + k − j + 1)2j
(|ν|+ n + s + k − j)jR

k−jc, j ≤ k,

(R∗
ν)jRkc =

(n− s + 1)k

(n + 1)2k
(|ν|+ n + s)k(R∗

ν)j−kc, k ≤ j.

Note by Corollary 2.5, (R∗
ν)jRkc = 0 if j − k > n− s, i.e., n + k − j > s.

Proof: Let g =
∑

|β|=n+k−j bβBβ . First suppose j ≤ k. Then by two applications
of Corollary 2.7, we have

〈f, g〉ν =
((n + k − j)!)2

(n + k − j − s)!(|ν|)n+k−j+s
〈Rk−jc, b〉ν,n+k−j

=
((n + k)!)2

(n + k − s)!(|ν|)n+k+s
〈Rkc, Rjb〉ν,n+k

=
((n + k)!)2

(n + k − s)!(|ν|)n+k+s
〈(R∗

ν)jRkc, b〉ν,n+k−j .

Since b is arbitrary, the first arguments in the inner products 〈·, b〉n+k−j are equal, giving

((n + k)!)2

(n + k − s)!(|ν|)n+k+s
(R∗

ν)jRkc =
((n + k − j)!)2

(n + k − j − s)!(|ν|)n+k−j+s
Rk−jc

as supposed. Similarly, for k ≤ j, use

〈f, g〉ν =
(n!)2

(n− s)!(|ν|)n+s
〈c, Rj−kb〉ν,n =

(n!)2

(n− s)!(|ν|)n+s
〈(R∗

ν)j−kc, b〉ν,n+k−j

=
((n + k)!)2

(n + k − s)!(|ν|)n+k+s
〈Rkc, Rjb〉ν,n+k =

((n + k)!)2

(n + k − s)!(|ν|)n+k+s
〈(R∗

ν)jRkc, b〉ν,n+k−j.
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For Legendre polynomials (ν = 1) and j ≤ k this appears as Lemma 8 in [FGS03].
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