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THE REPRESENTATION OF STIRLING’S NUMBERS AND STIR-
LING’S POLYNOMIALS AS SUMS OF FACTORIALS.

By MoreGAN WARD.

1. T give here a new representation of the Stirling numbers and the
associated Stirling polynomials * as sums of factorials, and use the formulas
to deduce various arithmetical and algebraic properties of the numbers. My
fundamental formula for the Stirling polynomial ¢ %_1(&:) reads as follows:

(8.81) ypa(z) = (—(Z;——Tli;——; [pr—l__ ;ig Hp2 + (z+2)(z+3) o

(r+2)(p+3)
s (@+R)(@+3) - -(z+p) ]
_— _‘1 -t T 0 H 0 .
LA () IR R
The constants H," appearing here are positive integers defined recursively by
(4.1) Hgo— (2 +1—1)Hy + (p—r + 1) H,

with the initial values
(4.11) H'=1, H,,,=1-35---Q2p+1), H,=1
Nielsen | has expressed the Stirling polynomial ,_; (2) in the form

Vp-1 () = 091,027 + 091,222+ * * + 0p1,p-2% + Op1,p-1.

Unfortunately, the numbers oy, are not integers, and the recursion formulas
for them are very complicated, so that it is difficult both to ascertain their
form,§ and to obtain properties of the Stirling polynomial from such a repre-
sentation. In contrast, the numbers H," are integers of comparatively simple

* We use here freely the notation and formulas for the Stirling numbers given by
Nielsen in his well known Handbuch der Theorie der Gammafunction (Leipzig, 1906),
Chapter V. We shall refer to this source as Nielsen, Handbuch, giving page reference.
A recent paper by C. Tweedie, Proceedings of the Edinburgh Mathematical Society,
vol. 37 (1918), pp. 2-25, contains many interesting new results on these numbers. Since
this paper was in press, C. Jordan (Tohoku Journal, vol. 37 (1933), pp. 254-278) has
given an expression for the Stirling number as a sum of factorials. See especially
pp. 264-265 of his paper, where his numbers (?)'mi are my H, 1.

T Nielsen, Handbuch, p. 72.

i Handbuch, pp. 72-73. See also Annali di Matematica, II1, vol. 10, pp. 309-316.

§ Nielsen, Annali di Matematica, III, vol. 10, p. 313; Tweedie, paper cited, Sec-
tion 11.
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88 MORGAN WARD.

form, while (8.31) leads directly to interesting congruential properties of the
Stirling polynomials and Stirling numbers.

To give an example of such congruences, let P be any prime greater than
2p, and r any positive integer. Then if C',? denotes the Stirling number,

CPy =1 (mod Pr) if n+2=0 (mod Pr),
0%y =271 — 1 (mod Pr) if » 4 83=0 (mod Pr).

As a numerical illustration, take p=38, P=", r=1. Then from
Glaisher’s table * of C\?, C;® =225, 0* = 50, and

25=1 (mod7), 50=2*—1 (mod?7).
2. We begin with the Stirling numbers of the first kind defined by
z(z 4+ 1) (2 +n—1) = COpl2" 4 Cplar* + - - + CpPam® 4 - - - 4 Cp 'z,
We call n the rank of C,? and p its order. We have the immediate relations
(2.1)  CPpyy = Cu? + nCy?™,
(2.2) Cpo=1, Cprt=(n—1)!, (n=1,2,---; p=0,1,-+-,n—1).

We now define 0.2 for all integral values of # and p, positive or negative,
by the recursion formula (R.1) with the initial values (R.2). Then it is
readily shown that

(2.3) Ot = 0, (n=0,1, - - ;r=1,2,- - ).
Furthermore, if

Fo(z) — 3 Gtz
n=0

is the generating function for the Stirling numbers
@, 02, 0P, - -
of fixed order p, then an easy induction shows us that
(R-4) Fy(2) = [/ (1 —2)*"]Hy(2), (p=0,1L,, ")

where H,(z) is a polynomial in 2z of degree p—1 with positive integral
coefficients, and, by convention, we take

(2. 41) Hy(z) =1.

* Quarterly Journal, vol. 31 (1900), pp. 26-28. This Table extends as far as
n=20. C,» is denoted in Glaisher’s notation by Sm(l, 2, oyn—1).
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The polynomials Hy,(#) appearing in (. 4) satisfy the recursion relation
(2.5)  Hpu(2) = (pr+ p + 1) Hp(2) + (1 —2)2(d/dz) Hy(2)
which with (2.41) determines them completely.

3. We next put the polynomial Hy(z) in the form

(3.1) Hy(2) = H,* — Hy' (1 —2)
4+ HP(1—2)2—: - -+ (— 1)t Hp (1 —2)7™
Before studying the constants Hy", we shall deduce our main formulas. On

substituting (8.1) into (2.4) and then expanding in ascending powers of z,
we find that

& (s+1)(s+2)- - -(s+2—1)
J— 1 — 7
Bo(z) = 2 2 (=1 8y RTTE TRy Crym—
Therefore by comparing the coefficient of 2* on both sides of this expression,
we find that

O =8 (— 1) By (n—p) (n+1—p) -+ (b p—r—1)/(2p—7) L.

On replacing n by # 4~ 1 in this expression and removing the common factor
(=1 (n+1)n--- (n+1—p)/(p+1)! from the right side, we obtain
finally the formula

, (D (—=1)7
3-2) O = )T+ D1
, n+2 o2 (n+2)(n 4 3) .
X[ B — s B e k) B
Lt t3) - (vt p) o,
H =D (p+2R)(p+3) - () H":"

Omm+1= [('I’b+ 1) !/(n_p) !] 5”1’-1(”’)

Now *

where yy,; () is the Stirling polynomial of order p — 1. Hence

\ (—1) (a2 (n-l-p) g

Since this formula holds for all positive integral values of n, we deduce that

* Nielsen, Handbuch, p. 14, formula (15).
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L
(z+2)(z+3)

tToToGre T

(@ t+2)(@+38)- - (93+20) 0
T =D P+2)(p+3)- Hy ]

for all values of the variable z.
We may use this result to obtain a formula similar to (3.2) for the
Stirling numbers €,° of the second kind * defined by the expansion

Ys(e+1) - (@ n—1) =3 (— 1) Gr/am.
For ¢
€ = [(— 17 (n+p—1)/(n—2) T4z (—n),

so that by (3. 21),

b (tp—1)!
(3 &= o L5 +2

(n_z)(n_3) Hp—3 PPN
TeFroeFn T
(n—2)(n—3) - (n—p) ]
eI 3)

These formulas have immediate arithmetical consequences. For suppose
that P denotes a fixed prime greater than 2p, and r any positive integer.
Then we deduce from (3.21) that

p—2

Ypa(n) =[(—1)»/(p+ 1) 1 1Hp (mod Pr)  if n+2=0 (mod P"),
Y1 (n) = [(—1)2*/(p + 1) | H{H#™ + [1/(p + 2) 1 H*} (mod Pr)
if n + 3=0 (mod Pr),

and so on. There are analogous congruences for the Stirling numbers de-
ducible from (3.2) and (3. 3); namely,

CPpyy = HyP* (mod Pr) if n 4+ 2=0 (mod Pr),
3.4) Oy = (p + 2) Hy?* + Hp? (mod Pr) if n -+ 8==0 (mod Pr),
(4 §p =Hp (mod Pr) if n—2==0 (mod Pr),
? = (p+ 2)HyP "'+ Hp? (mod Pr) if n—3=0 (mod Pr),

and so on.

* Nielsen, Handbuch, p. 68.
t Nielsen, Handbuch, p. T4.
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We may note in passing an interesting consequence of the form of the
generating function Fp(2) given in (R.4). TFor if

AC = COp? — 21 30 =0 4 C2 4+ - -+ CP
denote the usual operations of the calculus of finite differences applied to the
rank of the Stirling number C,?, the generating functions of the numbers
ACy? and 30,2 are (1—2)Fp(2) and (1 —2)™* Fy(2) respectlvely But with
H,(z) in the form (8.1), each of these functions may be immediately ex-
panded in ascending powers of z. We obtain in this manner the formulas

ARy, — (— 1)9 (;‘)

el o D ()
(35) x[Hf’ P+l T oD+ I

= (=17 (1 F2)

ontB o (D) .
X[H”” 3T Ity ]

and it is easy to write down analogous formulas for the higher differences and
summations of C%,;. The method by which we obtained the congruences
(8.4) yields then an unlimited number of congruences involving sums and
differences of Stirling numbers of the same order.

If we compare (3.5) (i) with (2 1), we see that

Ot = (— 1)7t (n)

nEL e, (ED(ED) o
X[ =T B G Gt 1

On the other hand, if we put n =n—1, p=p—1in (3.2), we find that

anp-]': -——1 p—z(n
(=172,

e 1 (n41) (n+2)
<[ — 5 ternotn L

Therefote, for all integral values of n, we have the fundamental formula

[Hp_l n+1 mp_z_‘_(n-'_l)(n—'_z) pr_3

(p+D(p+2?)
pn kD@D (tp—2) g
(3'6)_ TEDT TN Gr—r) OF ]—_"

AT FL T, +(p+1)(p+2)H
L ypz it 4R) - - (ntp—3)
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We may if we please replace n here by a continuous variable # as in
formula (3.21).

In particular, if we let » = p, we have

Hmﬂ'l___pr—Z F Hp? e - = — (Hﬁff‘_ﬂﬁ +H§'C§ —_— )
From this result and the fact that H,° — 1, we deduce that
&7 HP—HpHF— - (— D) Hpr—pl,

a formula which affords a convenient check when computing the numerical
values of the integers H,".

4. We now proceed with the study of the numbers H,". If we assume
that (3. 1) holds for all positive integral values of p, we obtain by substituting
in (2.5) and comparing the coefficients of the various powers of 1 —z, the
recursion relations

H%,, — (2]3 + l)Hpo, Hey = Hp' and
(4.1) Hrpu= (2p +1—r)Hy + (p—r + 1) H," ™

Since H,® =1, we deduce from the first two relations that
(4.12) Hpyy=1-3-5---2p+1, H?p,=1, (p=0,1,- - ).

The first few numbers H," are given in the following table: *

p |lr=o0 1 2 3 4 5 6 7 8 9
1 1

2 8 1

3 15 10 1

4 105 105 25 1

5 945 1260 490 56 1

6 10895 17325 9450 1918 - 119 1

7 185135 270270 190575 56980 6825 246 1

8 2027025 4729725 4099095 1636635 302995 22985 501 1

9 34459425 91891800 94594500 47507460 12122110 1487200 74316 1012 1
10 654729075 1964187225 2343240900 1422280860 466876410 81431350 6914908 235092 2085 1

Here the number in the p-th row and r-th column is H,"; thus H,? = 25.
We next extend the definition of H," to all integral values of p and r by
(4.1) and (4.12). By a brief induction, we find that

(4:. 13) Hp =O ('rg 1; p=,0, 1, 2,;'. .)
(4:14:) pr'”‘:O (1‘=O,p=1,2,3,-.-;rél,p?r,r_l_l,...).

# The table has been checked by the use of formula (3.7).
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Now replace 7 by p—r in (4.1). We obtain
(4-2) Hrr—= (p+ 7+ DHp + (r+ 1) B
Let the generating function of the numbers
Hyr, Hir Hy oy oo Hyp e o
be denoted by & ,(z), so that
(4.3) Hr(z) = 2 Hprar = 3 Hprao

p=r

since by (4.13), =H'"="+ -=H7=0.
On replacing r by r+1in (4 3), changlng the summation variable from
p to p -+ 1, and reducing by (4.2), we obtain the formula

(4.4) 1— (r+1)2)Hra(z) = (r+ 1)aH-(¢) + 2*(d/dz) Hr (), )
—0,1,2,- - ).
Since by (4.14), H? = 0 and H," =1, we have (-

(4. 41) 9 o(z) =1

These two formulas serve then to define the functions % .(z) completely,
and %, (z) is seen to be a rational function of 2. It is easy to determine its
form. For by direct calculation from (4.4), we find that

L z?[3 — 2]
—5 @ =G
z*[15 — 45z 4 402% — 122%]
(1—=z)3(1—22)2(1—3z) ’
$4[105—840@3—]—26251}2——4130(&3+3500$4—1560$5—|—288$6]
(1—z)*(1—Rz)® (1—3z) 2 (1—4x)

Hi(z) =

(4.5) Hs(2z) =

Hi(z) =

We are therefore led to infer that the generating function ¥-(z) is of
the form

(4.51)  H(2) =27 (2)/(1—2)"(1—22)"* - - (1—rz)

where &, (z) is a polynomial in z with integral coefficients of degree r(r—1)/2.
The proof is a straightforward induction from (4.41) and (4.4) and will be
omitted here.*

If we put the right-hand side of (4. 51) into partial fractions, we see that
- () may be written as

* The relationship between ®...(x) and ®.(#) deduced in the course of the in-

duction is unfortunately too complicated to be of much service.
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B1 01 C'2
Hr(w) = 4o+ 1—rz + 1—(r—1)=z + (1— (r—1)z)?
Un .. U
R R co
where the numbers 4,,- - -, U, are all rational. If we now expand the right-

hand side of this expression in ascending powers of z and collect the coefficient
of 27, we find that H,» is of the form

Hyp? = bor? +(co+ 01p) (r—1) + (o + thp + wap® 4+~ + urap™™)

where the numbers b,, * * -, ur_, are again all rational. We can however assert
more than this. For if we apply the process just described to the expressions
in (4.5), we find that * '

Hpi—=1, Hp*—[21— (p+3)],
(4.6) Hps =13 — (2p +10)2 + (p* + Tp + 13)],
Hpt = Y [499 — (3p + 21) 37
+ (8p° 4 33p + 96) 20 — (p* 4 12p* + 50p + 73) .

We infer therefore that H,» " is actually of the form

(4.61)  Hp7=[1/(r—1) !]::2: (— 1)1 0u(p) (r —Typrrit

where 6;(p) is a polynomial in p of degree I with positive integral coefficients,
and 6,(p) = 1. I cannot however prove this statement.}

5. We conclude by giving a method for calculating the polynomials 6;(p)
in (4. 61) recursively. We begin by assuming that

(5:1)  HFew—(1/r1) 3 (—1)e(p) (r+ 11—,

where ®;(p) is a polynomial of the same form as 6;(p). On setting p=—p 41
in (5.1), we find that

Hor = (1/r! l)=:2 (—1) 0y(p + 1) (r 4+ 1 —1)per1-L,

* All of these formulas have been checked numerically, and are believed to be
correct. The two congruences mentioned in the introduction are obtained by substi-
tuting for pr-l and pr-z from (4.6) into (3.4).

1 As additional support for it, I have found that
H p-5 = (1/24) [62+¢ — (4p + 36)4p+3 4 (6p2 + 90p + 354) 3p+2

— (4p3 -+ T2p2 + 452p + 992) 20 + (pt + 18p3 + 125p2 + 400p + 501) 1.
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If we now substitute these expressions for H Lt Hppr, Hpr+D into (4. 2)
and express the fact that the resulting expression must be an identity in p,
we obtain the formula

(5.2)  lu(p+1) —(r+1)(®(p +1) —:i(p))
=r(p+r+1)0i.(p), (r=1=1),

which determines ®;(p) if 6;_,(p) is known.

If we attempt to determine ®;(p) by writing it as a polynomial in p with
undetermined coefficients, we find that we can express the coefficients only as
determinants in the coefficients of 6;_;(p). We therefore assume instead that
611 (p) -and ®;(p) are expressed as sums of factorials:

0r1(p)=Yo + 40+ yep(p+ 1)+ +y1ap(p+1) - (p+1—2),
O1(p)=2o +a1p+wp(p+ 1)+ + @p(p+1) - (p+1—1),

and seek to determine the z in terms of the y. Needless to say, the z and y
are all integers, when and only when all the coefficients in the ordinary poly-
nomial expressions for 6;_,(p) and ®z( p) are integers.

If for convenience we set

(5.3)

Tt = Y=Y =Y. =20,

we obtain on substituting from (5. 3) inte (5.2) the difference relation

(5.4) 15, —(5 + 1) (- 1) = 1 (Yoos -+ (r—28) g — (5 -+ 1) (r—5) o),
(s=0,1,- - -, 1).

As a numerical verification of this formula, take r = 8 and I =2 so that
we have to do with Hy7* and H,*® From the formulas (4.6), we have
®,(p) = 3p® -+ 33p + 96, 6,(p) = 2p + 10, so that z, = 96, v, — 30, z, =3,
9o =10, y; = 2. The formula (5.6) with s =0, 1,2 then gives

Ry —4x;, — 3(8yo—38y1); 20— 8T, =3(yo+ ¥1); 2%2=3y;;
or 192 — 120 =3(30—6); 60—24=3(10-+2); 6=6.

Since (5.4) is effectively a linear difference equation of the first order
for m;, the explicit form of z; may be written down, but the general result is
too complicated to be of interest.



