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THE HOMOGENEOUS CHAOS. 

By NoRBERT WIENER. 

1. Introduction. Physical need for theory. 
2. Definition. Types of chaos. 
3. Classical ergodic theorem. Lebesgue form. 
4. Dominated ergodic theorem. Multidimensional ergodic theorem. 
5. Metric transitivity. Space and phase averages in a chaos. 
6. Pure one-dimensional chaos. 
7. Pure multidimensional chaos. 
8. Phase averages in a pure chaos. 
9. Forms of chaos derivable from a pure chaos. 

10. Chaos theory and spectra. 
11. The discrete chaos. 
12. The weak approximation theorem for the polynomial chaos. 
13. The physical problem. The transformations of a chaos. 

1. Introduction. Physical need for theory. Statistical mechanics 
may be defined as the application of the concepts of Lebesgue integratioln to 
mechanics. Historically, this is perhaps putting the cart before the horse. 
Statistical mechanics developed through the entire latter half of the nineteenth 
century before the Lebesgue integral was discovered. Nevertheless, it de- 
veloped without an adequate armory of concepts anld mathematical technique, 
which is only now in the process of development at the hands of the modern 
school of students of integral theory. 

In the more primitive forms of statistical mechanics, the integration or 
summation was taken over the manifold particles of a single homogeneous 
dynamical system, as ini the case of the perfect gas. In its more mature form, 
due to Gibbs, the integration is performed over a parameter of distribution, 
numerical or not, serving to label the constituent systems of a dynamical 
ensemble, evolving under identical laws of force, but differing in their initial 
conditions. Nevertheless, the study of the mode in which this parameter of 
distribution enters into the individual systems of the ensemble does not seem 
to have received much explicit study. The parameter of distribution is essen- 
tially fa parameter of integration only. As such, questions of dimensionality 
are indifferent to it, and it may be replaced by a numerical variable a with the 
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898 NORBERT AWIENER. 

range (0, 1). Any transformation leaviig invariant the probability properties 
of the ensemble as a whole is then represented by a measure-preserving trans- 
formation of the interval (0, 1) into itself. 

Among the simplest and most important ensembles of physics are those 
which have a spatially homogeneous character. Among these are the homo- 
geneous gas, the homogeneous liquid, the homogeneous state of turbulence. 
In these, while the individual systems may not be invariant under a change 
of origin, or, in other words, under the translation of space by a vector, the 
ensemble as a whole is invariant, and the individual systems are merely per- 
muted without change of probability. From what we have said, the trans- 
lations of space thus generate an Abelian group of equi-measure transformations 
of the parameter of distributionl. 

One-dimensional groups of equi-measure transformations have become 
well known to the mathematicians during the past decade, as they lie at the 
root of Birkhoff's famous ergodic theorem.' This theorem asserts that if we 
have given a set S of finite measure, an integrable function f (P) on S, and 
a one-parameter Abelian group TX of equi-measure transformations of S into 

itself, such that 

(1) TX T =- Tx+ ( < A < X, X < it <c ), 

then for all points P on S except those of a set of zero measure, and provided 
certain conditions of measurability are satisfied, 

(2) lim I f(TXP)dX 
A->ooA o 

will exist. Under certain more stringent conditions, known as metric transi- 
tivity, we shall have 

1 fA 
(3) rim-1 f (TXP)dX J f (P)dVp 

A->oo A s 

almost everywhere. The ergodic theorem thus translates averages over an 
infillite range, taken with respect to A, into averages over the set S of finite 
measure. Even without metric transitivity, the ergodic theorem translates 
the distribution theory of A averages into.the theory of S averages. 

In the most familiar applications of the ergodic theorem, S is taken to be 
a spatial set, and the parameter A is identified with the time. The theorem 
thus becomes a way of translating time averages into space averages, in a 

1 Cf. Eberhard Hopf, " Ergodentheorie," E}rgebnisse der Mathematik und ihrer Grenz- 
gebiete, vol. 5. See particularly ? 14, where further references to the literature are given. 
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maimer which was postulated by Gibbs without rigorous justification, and which 
forms the entire basis of his methods. Strictly speaking, the space averages 

are generally in phase-space rather than in the ordinary geometrical space of 

three dimensions. There is no reason, however, why the parameter A should 
be confined to one taking on values of the time for its arguments, nor even 
why it should be a one-dimensional variable. We are thus driven to formulate 
and prove a multidimensional analogue of the classical Birkhofi theorem. 

In the ordinary Birkhoff theorem, the transformations TX are taken to 
be oiie-one point tralnsformations. Now, the ergodic theorem belongs funda- 
mentally to the abstract theory of the Lebesgue integral, and in this theory, 
individual points play no role. In the study of chaos, individual values of 

the parameter of integration are equally unnatural as an object of study, and 
it becomes desirable to recast the ergodic theorem into a true Lebesgue form. 

This we do in paragraph 2. 
Of all the forms of chaos occurring in physics, there is only one class 

which has been studied with anything approaching completeness. This is the 
class of types of chaos connected with the theory of the Brownian motion. In 

this one-dimensional theory, there is a simple and powerful algorithm of phase 
averages, which the ergodic theorem readily converts into a theory of averages 
over the tranisformation group. This theory is easily generalized to spaces of 

a higher dimensionality, without any very fundamental alterations. We shall 

show that there is a certain sense in which these tvpes of chaos are central in 

the theory, and allow us to approximate to all types. 
Physical theories of chaos, such as that of turbulence, or of the statistical 

theory of a gas or a liquid, may or may not be theories of equilibrium. In the 

general case, the statistical state of a chaotic system, subject to the laws of 

dynamics, will be a function of the time. The laws of dynamics produce a 

continuous transformation group, in which the chaos remains a chaos, but 

changes its character. This is at least the case in those systems which can 

continue to exist indefinitely in time without some catastrophe which essen- 

tially changes their dynamic character. The study, for example, of the de- 

velopment of a state of turbulence, depends on an existence theory which avoids 

the possibility of such a catastrophe. We shall close this paper by certain very 
general considerations concerning the demands of an existence theory of this 

sort. 

2. Definition. Types of Chaos. A continuous homogeneous chaos in 

n dimensions is a scalar or vector valued measurable -function p (x1, , Xn; a) 

Of X1i , Xn; c7, in which x1, x,,, assume all real values, while a ranges 

over (0, 1); and in which the set of values of a for which 
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(4) p (Xi + yl, . , xn + Yn; a) belongs to S, 

if it has a measure for any set of values of yi, , yn, has the same measure 

for any other set of values. In this paper, we shall confine our attention to 

scalar chaoses. A continuous homogeneous chaos is said to be metrically 
tr-ansitive, if whenever the sets of values of a for which p (xi, , Xn; ) 

belongs to S and to S1, respectively, have measures M and M1, the set of values 
of a for which simultaneously 

p(Xl, * * xn; (c) belongs to S 
and 

p (Xi + yi, . , x. n + yn; a) belongs to S1 

has a measure which tends to M1 as yl2 + - -4-+ Yn2 _> o. 

If p is integrable, it determines the additive set-function 

(5) a();) j X (Xl, xn; a)dxl dxn. 

On the other hand, not every additive set-function may be so defined. This 

suggests a more genieral definition of a homogeneous chaos, in which the chaos 

is definied to be a function (Y; a), where a ranges over (0, 1) and E belongs 

to some additively closed set , of measurable sets of poinits in n-space. We 

suppose that if E and Y, do not overlap, 

(C) ) ~(:>+ Y-,; a) H ~('-,; a) +a(12 

We now define the new point-set : (y1, * * *, y7,) by the assertionl 

( (yi, * Yn) contains x1 + yi, , xn + yn when and only when 
E containis x1i . . . xn. 

This leads to the defiuiition of the additive set-function y...~ ; a) by 

(8) &Y1. * * *, w( ; a) =-( (yip Y n)>2) 

If, then, for all classes S of real numbers, 

(9) Mieasure of set of a's for which 8y,... (; a) belongs to class S 

is independent of yi, , yl, in the sense that if it exists for one set of these 

numbers, it exists for all sets, and has the same value, and if it is measurable 

in yI, , jn, we shall call W a homogei-eous chaos. The notion of metrical 

transitivity is generalized in the obvious way, replacing p (x1, , x,,; a) by 

( ; a), and p(xi + yi, ,x + yn; a) by j-Ji, . . ., v.(:; a) 

The theorem which we wish to prove is the following: 
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THEOREM I. Let (Y,; a) be a homogeneous chaos. Let the functional 

( 10) @{H (>; a) } = g (2) 

be a measurable function of a, such that g(a) log+ I g(a) I da is finite. 

Thent foi almost all values of a, 

(11) lim 1.(,; a)Idyl dy, 
r---ooV (r) R 

exists, where R is the interior of the sphere 

(12) Y12 + Y22 + + Yn2 _172 

and V(r) is its volume. If in addition, a(Y; a) is metrically transitive, 

(13) lim J y.e ( ,; a2) }dyl dy, =JJ {a(; A3) }d/3 

for almost all values of a. 

3. Classical ergodic theorem. Lebesgue form. Theorem I is mani- 
festly a theorem of the ergodic type. Let it be noticed, however, that we 
nowhere assume that the transformation of a given by /3 Ta when 

(14) lY . . . Yn ( P; 3) =a(; ,) 

is one-one. This should not be surprising, as the ergodic theorem is funda- 
mentally one concerning the Lebesgue integral, and in the theory of the 
Lebesgue integral, individual points play no role. 

Nevertheless, in the usual fornmulation of the ergodic theorem, the ex- 
pression f(TXP) enters in an essential way. Can we give this a meaning 
without introducing the individual transform of an individual point? 

The clue to this lies in the definition of the Lebesgue integral itself. If 
f(P) is to be integrated over a region S, we divide S into the regions Sa ,b(f), 

defined by the concdition that over such a region, 

(15) a < ft(P) ? b. 
We now write 

> ~~~~~~00 
(16) f(P)dTVp =lim rn nE m(S(nfl)e,ne(f)). 

~,S eo- oo 

The condition that f(P) be integrable thus implies the condition that it be 
measurable, or that all the sets Sa,b(f) be measurable. 

Now, if T is a measure-preserving transformation on S, the sets TSa,b(f) 
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will all be measurable, and will have, respectively, the same measures as the 
sets Sa,b(f). We shall define the function f(TP) = g (P) by the conlditions 

(17) TSa,b (f) =Sa,b(g). 

If T conserves relations of inclusioni of sets, up to sets of zero measure, this 
function will clearly be defined up to a set of values of P of zero measure, 
and we shall have 

(18) f f(TP)dVP f f(P)dTVp. 

We may thus formulate the original or discrete case of the Birkhoff 
ergodic theorem, as follows: Let S be a set of points of finite measure. Let T 

be a transformation of all measurable sub-sets of S into measurable sub-sets 
of S, which conserves measure, and the relation betweeni two sets, that one 

contains the other except at most for a set of zero measure. Then except for 
a set of points P of zero measure, 

I N 

(19) h Nm f f (TnP) 
will exist. 

The continuous analogue of this theorem needs to be formulated in a 
somewhat more restricted form, owing to the need of providinig for the in- 

tegrability of the functions concerned. It reads: Let S be a set of points of 

finite measure. Let TP be a group of transformations fulfilling the conditions 
we have laid down for T in the discrete case just mentioned. Let TX] be 
measurable in the product space of A and of P. Then, except for a set of 

points P of zero measure, 
1 CA 

(20) lim-- f(TXP)dA 
A -ooA o 

will exist. 
In the proofs of Birkhoff's ergodic theorem, as given by Khintchine and 

Hopf, no actual use is made of the fact that the transformation T is one-olle, 
and the proofs extencd to our theorem as stated here, without anly change. The 

restriction of measurability, or something to take its place, is really necessary 
for the correct formulation of Khintchine's statement of the ergodic theorem, 
as Rademacher, vonl Neumann, and others have already pointed out.2 

With the aid of the proper Lebesgue formulation of the ergodic theorem, 
the onie-dimensional case of Theorem I follows at once. Actually more follows, 
as it is only necessary that g belong to L, instead of to the logarithmic class 

2 Cf. J. v. Neumann, Annals of Mathematics, 2, vol. 33, p. 589, note 11. 
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with which we replace it. To prove Theorem I in its full geuierality, we must 
establish a multidimensional ergodic theorem. 

4. Dominated ergodic theorem. Multidimensional ergodic theorem. 
As a lemma to the multidimensional ergodic theorem, we first wish to establish 

the fact that if the function f (P) in the ergodic theorem satisfies the conldlitioll 

(21) f jf(P) I log+ I f(P) I dVp< 0, 

then the expressions (19) and (20) not only exist, but the limits in question 
will be approached under the domination of a summable function of P. We 

shall prove this in the discrete case, for the sake of simplicity, but the result 

goes over without difficulty to the continuous case. 
Let T be an equimeasure transformationl of the set S of finite measure 

into itself, in the generalized sense of the last paragraph, and let W be a 

measurable sub-set of S, with the characteristic function W(P). Let U be 

the set of all points P for which some T-iP belongs to W. Let i(P), when 
P belongs to W, be defined as the smallest positive number n such that T-nP 

belongs to W, and let us call it the index of P. Every point of W, except for 
a set of measure 0, will have a finite index, since if we write Woo for the set 
of points without a finite index, no two sets TmW00-o and TnWoo can overlap, 
while they all have the same measure and their sum has a finite measure. 
Thus except for a set of zero measure, we may divide W inlto the sets Wp, 
each consisting of the points of W of index p. It is easy to show that if 
1 ? p < oo, 1 < p' < oo, 0?e j < p, 0 ? j' < p', the sets T-iWp and T-j'Wp 
can not overlap over a set of positive measure unless j =- j', p = p'. Similarly, 
the sets T-PWP and T-'Wp, can not over]ap over sets of positive measure, unless 

p p', and represent a dissection of W, except for a set of zero measure. Let 

us put Wpq for the logical product of Wp and TPWq; Wpqr for the logical 

product of Wpq and TP+qWr; and so on. Then if k is fixed, the sets T- Wp,_p . . . Pk 

cover U (except for sets of zero measure) once as i goes from 0 to pi, once as 
it goes from pi to p, + p2, and so on; making just k times between 0, inclusive, 
and pl + P2 + * - * + pi, exclusive. Thus if SK is the set of all the points 
in all the }plp,. . . Pk for which pl + P2 + * + pk = K, the total measure 

of all the SK'S for 2N+1 ? K 2N can not exceed 1cm (S) /2N. 

Now let P lie in T- WpP2p... Pk, where 0 ? j < pl + P2 + + p'. Let 

us consider the sequence of numbers a1, where if pi + + pi j 

< pi + + pi+,, a1 is the greatest of the numbers 

1 2 

j-pl- * *--pi+ [j+p- + 

3 1+ I 
pi pl2 
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Then a1 will be the largest of the numbers 

W(P) + W(TP) . W(P) + W(TP) + + W(TiP) 
W17(P),p 2 1+1I 

k 

The sum E aj, for a fixed K, will have its maximum value when pl = P2 
0 k 

pk-1 1; p K + 1 k, when it will be k + lc/j' c (1 + log K/k). 
k?+1 

In this case the sequence of the aj's will be 

k, k Ic 

k+1' k+2' K 
k times 

This remark will be an easy consequence of the following fact: let us 
consider the sequence 

(22) A n-1 n n i 1, I A- 2+- 

and the modified sequence 

(23) 'n-i' '2 

1 A+F-i A-I--i. 

[~~~~ ] 

where of course 

+i 1 A+i 1 

n+ [ []n+ [A + rA 

A+ 1 Iy > 

n L E i L[n[ ] L<1]? +1 

Apart from the arrangement, the terms of (22) will be the same as the terms 

of (23), except that in (23), A + 1+ replaces A/n. Now, 

+_n 

t+ I tA 
r?D z n n 

so that the sum of the terms in (23) is greater than that in (22). 
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Since the transforms of a given set have the same measure as the set, and 
the sets T-jSK cover U exactly k times, we have 

k XJ { W(P) +max (W(P), W(P) +W (TP) 

+ max (W(P), W(P) + W(TP) W(P) + W(TP) + W(T 2P) 

+ . +max W (P), W (P) +2W (TP)' ' 

W (P) + + W(TkP))} dVp 

00 

E Mn (SK) ( + log 

< ( ) ( + og2 ) + E0 km (S) I + log 2N) 

::E; + log 
2 

m (W) + const. 
km 

2(7)} 

the constant being absolute. If we now put 

N [log j (() /log2], 

this last expression is dominated by 

const. mr(W) (I + log S(()) 

Since the constant is independent of k, we see that the Cesaro average of 

maX (W(P),W(P) + W(TP) W. (P) + + W(Tk-1P)) 

is dominated by the same term. Thus 

fBS max (W(P), . . . W (P) + + W (Tk-lP)) 

? const. m(W) ( + logm(S) 

and it follows by monotone convergence that there exists a function W* (P) 
such that 

(24) 4 W*(P)dVp ? coinst. m(W) (I + log (() 

and for all positive m, 

(25) W(P) + + W(TmP) ? W*(P). 
m +I 
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Now let f (P) be a function such that 

(21) f jf(P)Ilog+ f(P)IdVp <oo. 

Let W (N) be the set of points such that 

(26) 2N ? I f (p) ?2N+1, 

and let f(N) (P) be the function equal to f(P) over this set of points, and 0 
elsewhere. Then there exists a function f(N)* (p), such that 

(27) f(N) (F) + . + f(N) (Tmp) 
<f(N)*(p) (M 0, 1, 2,* rn+1 

and 

(28) f f(N)*(P)dI7p ? const. M(W(N)) + log+ (I(N))) 2N. 

Hence if 

(29) +n(W(N)) (+log+ ( )) 2N < 00 

00 

(30)~ ~ ~ ~~~f f(p) _= 'y f IN) 
(p), 

-oo 
then 

(31) 2f(P) + +f(TinP) ?f*(P) (mr=0, 1, 2, 

andl 

(32) 4 * (P)dIp ? const. d m (W(N)) + log+ M ())) 2N* 

However, 

(33) r +n(W()) ( +log+m (N)) 2N 
00 / 
- I I f (P) I dVp I + log+ f1rn(S) 

-00 W(N) f f (P) I dVp 

C1 I tf(P) d+( 1+ 2 f (P) I M(S) dVp 

+4. 'S If(Q)dVQ 

f) {(P) IdVp 1 +log+ 7ts 
s V ( [~~~~~ f (P) I dVpy 

+ I f/ (P) ! log+| I (P) I dVp. 
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Thus f f* (P) dVp has an upper bound which is less than a function of 

j f (P) dIVp and j f (P) I log+ I f (P) dIVp, tending to G as they both 

tend to 0. This establishes our theorem of the existence of a uniform dominant. 
There is a sense in which (21) is a best possible condition. That is, if 

(34) ip(x) === o (log+ x), 
the condition 

(35) (i( /f(P) ) f f(P)I dVp < c 

is not sufficient for the existence of a uniform dominant. For let S be a set 
of measure 1, subdivided into mutually exclusive sets S., of measures respec- 
tively 2-n. Let Sn be divided into mutually exclusive sets Sn,in . Sn,v w all 
of equal measures. Let T transform Sn,k into Sn, (k+l) (k < vn), and Sn,vn into 

Sn1 Let f(P) be defined by 

(36) f (P) = an > 0 on Sq, (n=1 , 2, ); f (P) 0 elsewhere. 

Then the smallest possible uniform dominant of 

1 N 

(37 ) 'Y fT7nP) N + 1 0fTP 
is 

(38) f*(P) - k on Sn,k, 

and we have 

(39) i f*(P)dVp= 'ani(logVn)2-8 
i SVn 

Thus if 
(40) vn-22nan, a.,= Q(n!) 

the function f* (P) will belong to L if and only if 

(41) > > constf f(P) log+ f(P)dVp. 

While we have proved the dominated ergodic theorem merely as a lemma 
for the multidimensional ergodic theorem, the theorem, and more particularlv, 
the method by which we have proved it, have very considerable independent 
interest. We may use these methods to deduce von Neumann's mean ergodic 
theorem from the Birkhoff theorem; or vice versa, we may deduce the Birkhoff 
theorem, at least in the case of a function satisfying (21), from the von 
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Neumannl theorem. These facts however are not relevant to the frame of 

the present paper, and will be published elsewhere. 
We shall now proceed to the proof of the multidimensional ergodic 

theorem, which we shall establish in the two-dimensional case, although the 
method is independent of the number of dimensions. Let T1xT211 be a two- 

dimensional Abelian group of transformations of the set S (of measure 1) 

into itself, in the sense in which we have used this term in paragraph 3. Let 

T1XT2ILP be measurable in A, ,u, and P. We now introduce a new variable x, 
ranging over (0, 1), and form the product space E of P and x. We introduce 

the one-parameter group of transformations of this space, TP, by putting 

(42) TP (P, x) - (T1P cos 27rxT2P sin 2rxp, X) 

The expressions TP (P, x) will be measurable in p and (P, x), and the trans- 

formations TP will all preserve measure on E. Thus by the ergodic theorem, 
for almost all points (P, x) of X, if f(P) = f(P, x) belongs to L, the limit 

1 CA1 "A o i 2x i (43) lim - f (TP (P, x) ) dp = lim I fi f(T1P COS 2rxT2P sin 2wxP) dp 
A--oo A Ao A -oo A o 

will exist. If condition (26) is satisfied, it will follow by dominated con- 

vergence that the limit 
1 CA C1 

(44) lim - dp f (T1P cos 2rxT2P sin 2rxp) dx 
A -oo A o o 

will exist for almost all points (P, x), and hence for almost all points P. 
For the moment, let us assume that f(P) is non-negative. Then there 

is a Tauberian theorem, due to the author,3 which establishes that the expres- 

sion (44) is equivalent to 

1 As 2r 

(45) lim 2 L ('pdp X f (T1P cos OT2P sin OP) dO. 
A -*>oo 7rA2 o 

The only point of importance which we must establish in order to justify this 
Tauberiain theorem is that 

(46) P1+0udp 1 

for real values of u. Since every function f(P) satisfying (21) is the dif- 

ference of two non-negative functions satisfying this condition, (45) is estab- 
lished in the general case. 

It will be observed that we have established our multidimensional ergodic 

3 N. Wiener, "Tauberian theorems," Annals of Mathematics, 2, vol. 33, p. 28. 
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theorem on the basis of assumption (21), and not on that of the weaker 
assumption that f(P) belongs to L. What the actual state of affairs may be, 
we do not know. At any rate, all attempts to arrive at a direct analogue of 
the Khintchine proof for one dimension have broken down. The one-dimen- 
sional proof makes essential use of the fact that the difference of two intervals 
is always an interval, while the difference between two spheres is not always 

a sphere. 
The precise statement of the multidimensional ergodic theorem is the 

following: Let S be a set of points of measuire 1, and let T,X1T2X2 . * Tln?n be 
an Abelian group of equimeasur e transformations of S into itself, in the sense 
of paragraph 3. Let T,X1. Tnx?P be measurable inX1, A ,, An; P. Let R 
be the set of values of A1, , An for which 

(47) X12+A22+ * + X2Sr2 

and let V(r) be its volume. Let f(P) satisfy the condition (21). Then for 
almost all values of P, 

(48) lim V(j) f .* f(TXi . * T,aXnP)d .. dAX 
r-)-oV 

exists. 
That part of Theorem I which does not concern metric transitivity is an 

immediate corollary. 

5. Metric transitivity. Space and Phase Averages in a Chaos. If the 
function f (P) is positive, clearly 

(49) f 8f(Tj? f( TnXP TdA, P* ddn 
,\12+ ***+Xn-:5r2-,:12-. -. .Un2 

S js Jz f ~(TI.Xi . . .n"g . . . T.nUP) dA, . . . dAn 

Xi2+... +Xn2?r2 

S J ~~~f (T,,l .. TnXp) dAl .* d)tn. 

X14+** +Xn2,r2+L2+... + 

Hence 

(50) lim ) f (T1X. Tn,"11.. Tn,PP) dAl dAn 

lim f * 3* f(TXi . .* TnXRP)dX** dkAn 

and expression (48) has the same value for P and all its transforms under 
the group T1X1 TnXn. The condition of positivity is clearly superfluous. 
Thus in case expression (48) does not almost everywhere assume a single 
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value, there will be two classes S1 and S2 of elements of S, each of positive 
nieasure, and each invariant under all the transformations T1Xi . Tn". 

A condition which will manifestly exclude such a contingency is that if 
S1 and S2 are two sub-sets of S of positive measure, and e is a positive quantity, 
there always exists a transformation T - T_l. T2,X, such that 

mSl(TS2) S, <. 

From this it will immediately follow that if a chaos is metrically transitive ill 
the sense of paragraph 3, the group of transformations of the a space generated 
by translations of the chaos will have the property we have just stated, and 
under the assumptions of Theorem 1, 

(52) li V(. . . v.(; )dy. dy,, 

will exist and have the same value for almost all values of a. 
If almost everywhere 

(53) lim V J v.(Y; )}dy1 dyt A, 

and 

(54) V(r) .1.' R f v 4)(0i. (Y;.)}dy1 dyn <g(C() 

where g (a) belongs to L, then by dominated convergence, 

1 1~~~4 (55) A=~limn . j'. dy1 dynfda-ID v (.1.a 

= J ?{$(>c ) }dx. 

That is, the average of '{(Y.,; a)}, taken over the finite phase space of a, is 
almost everywhere the same as the average of 4>{i5y . . . , v,, (Y; a) } taken over 
the infinite group space of points yi, , y,". This completes the establish- 
ment of Theorem 1, and gives us a real basis for the study of the homogelieous 
chaos.4 

6. Pure one-dimensional chaos. The simplest type of pure chaos is 
that which has already been treated by the author ill connectioni with the 
Brownialn motion. However, as we wish to gelneralize this theory to a multi- 

4The material of this chapter, in the one-dimensionial case, has been discussed by 
the author with Professor Eberhard Hopf several years ago, and he wishes to thank 
Professor Hopf for suogestions which have contributed to his present point of view. 
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plicity of dimensions, instead of referring to existing articles on the subject, 
we shall present it in a form which emphasizes its essential independence of 
limensionality. 

The type of chaos which we shall consider is that in which the expression 
(,; ac) has a distribution in a dependent only on the measure of the set E; 

ancd in which, if E$ and Y. do not overlap, the distributions of a(X, o) and 
> (2, Y2) are independent, in the sense that if (p (x, y) is a measurable func- 

tion, and either side of the equation has a sense, 
I1 1 P1 

(56) 5 A~ +($(X1; a), $5(,2,8) )dad, 5 +($(X1, a), 5(Y-2, a))da 

We assume a similar independence when n non-overlapping sets 1,* , En 

-Ire concerned. It is by no means intuitively certain that such a type of chaos 
exists. In establishing its existelnce, we encounter a difficulty belonging to 
many braniches of the theory of the Lebesgue integral. The fundamental 
theorem of Lebesgue assures us of the possibility of adding the measures of a 
denumerable assemblage of measurable sets, to get the measure of their sum, 
if they do not overlap. Accordingly, behind any effective realization of the 
theory of Lebesgue integration, there is always a certain denumerable family 
of sets in the background, such that all measurable sets may be approximated 
by denumerable combinations of these. This family is not unique, but without 
the possibility of finding it, there is no Lebesgue theory. 

On the other hand, a theory of measure suitable for the description of a 
chaos must yield the measure of any assemblage of functions arising from a 
given measurable assemblage by a translational change of origin. This set of 
assemblages is essentially non-denumerable. Any attempt to introduce the 
notion of measure in a way which is invariant under translational changes of 
origin, without the introduction of some more restricted set of measurable sets, 
which does not possess this invariance, will fail to establish those essential 
postulates of the Lebesgue integral which deal with denumerable sets of poi-nts. 
There is no way of avoiding the introduction of constructional devices which 
seem to restrict the invarialnce of the theory, although once the theory is 
obtained it may be established in its full invariance. 

Accordingly, we shall start our theory of randomnless with a division of 
space, whether of one dimension or of more, into a denumerable assemblage of 
sub-sets. In one dimension, this division may be that into those intervals 
whose coordinates are terminating binary numbers, and in more dimensions, 
into those parallelepipeds with edges parallel to the axes and with terminating 
binary coordinates for the corner points. We then wish to find a self-consistent 
(listribution-function for the mass in such a region, dependent only on the 
volume, and independent for non-overlapping regions. 
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This problem does not admit of a unique solution, although the solution 
becomes essentially unique if we adjoin suitable auxiliary conditions. Among 
these conditions, for example, is the hypothesis that the distribution is sym- 
metric, as between positive and negative values, has a finite mean square, and 
that the measure of the set of a's for which j (S; a) > A is a continuous 
function of A.5 Without going into such considerations, we shall assume 
directly that the measure of the set of instances in which the value of ~ (S; a) 
in a region S of measure Ml lies between a and b > a, is 

(57) V27rM fexp (-2M) du. 
The formula 

(58) V27rMM2 exp 2Ml, (v-u) )d 

1 ( V2 \ 
V M1 + M2 p k 2(M1+ M2)] 

shows the consistency of this assumption. 
The distributions of mass among the sets of our denumerable assemblage 

may be mapped on the line segment 0 <a < 1, in such a way that the 
measure of the set of instances in which a certain contingency holds will go 
into a set of values of a of the same measure. This statement needs a certain 
amount of elucidation. To begin with, the only sets of instances whose 
measures we know are those determined by 

a, < H~(Sl; a) :5;b, 

(59) a2?C :(S2; a) ?b2 

a. :5 (Sn; a) :5 bit; 

where Sl, S2, * ' , S,, are to be found among our denumerable set of sub- 
divisions of space. However, once we have established a correspondence between 
the measures of these specific sets of contingencies and their corresponding 
sets of values of a, we may use the measure of any measurable set of values 
of a to define the measure of its corresponding set of contingencies. 

The correspondence between sets of contingencies and points on the line 
(0, 1) is made by determining a hierarchy of sets of contingencies 

al(m,n) ? w(Sl(m,n); a) ? b1(I,n 

(60) 
av(m,n) ? !(Sv(m.n); a) bv(m,n). 

8 Cf. the recent investigations of Cram4r and P. IAvy. 
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Let us call such a contingency Crn,l. If m is fixed, let all the contingencies 
CM,n (n - 1, 2,. .) be mutually exclusive, and let them be finite in number. 
Let us be able to write 

N 

(61) Cm,n I Crn+i,?1k. 
7c=1 

If S' is one of our denumerable sets of regions of space, let every Cm,, with a 
sufficiently large index m be included in a class determined by a set of con- 
ditions concerning the mass on S' alone, and restricting it to a set of values 
lying in an interval (c, d), corresponding to an integral of form (57) and of 
arbitrarily small value. (Here d may be oo, or c may be - oo.) Let us put 

C,,, for the entire class of all possible contingencies, and let us represent it 
by the entire interval (0, 1). Let us assume that C,),,, has been mapped into 
an interval of length corresponding to its probability, in accordance with (57), 
and let this interval be divided in order of the sequence of their ni's into 
intervals corresponding respectively to the component G,,1+1,,Zks, and of the 
same measure. Except for a set of points of zero measure, every point of the 
segment (0, 1) of a will then be determined uniquely by the sequence of the 
intervals containing it and corresponding to the contingencies Cm,,& for suc- 
cessive values of m. This sequence will then determine uniquely (except in a 
set of cases corresponding to a set of values of a of zero measure) the value 
of a (Sn; X) for every one of our original denumerable set of sets Sn. 

So far, everything that we have said has been independent of dimen- 
sionality. We now proceed to somethillg belongiln, specifically to the one- 
dimensional case. If the original sets S,, are the sets of intervals with binary 
end-points, of such a form that they may be written in the binary scale 

(62) (d1d2 . d,r dC+1. dj, di dkc dl,c+ di + 2-1-1) 

where di, * * , di are digits which are either 0 or 1, then any ilnterval whatever 
of length not exceeding 2- and lying in (a, b) (where a and b are integers) 
may be written as the sum of not more thaii two of the (b - a) 21,+2 intervals 
of form (62) lying in (a, b) and of length 2-1-1, not more than two of the 
(b - a)2/s+2 intervals of length 2 --2, andl so on. The probability that the 
value of 5 (S.; a) I should exceed A, or in other words, the measure of the 
set of a's for which it exceeds A, is 

(63) V27rM (Sn)Sex (-2 (S) du= o{exp (-Am(S&)i)} 

Now let us consider the total probability that the value of I (S,, : a) 
should exceed 2-(,+1) (1e) for any one of the (b - a) 2/s+1 intervals of length 
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2P1, or 2-(e+2)(-) for any one of the (b -a) 21t+2 intervals of length 2-i", 
or so on. This probability can not exceed 

oo 

(64) Y. (b - a) 29+7 o (exp( 2 0A+1),)) o (21'exp ( 2(A16) 
k=1 

On the other hand, the sum of 0 (Sn; a) I for all the 2 + 2 + intervals 
must in any other case be equal to or less than 

00 

(65) 2 1 2- ( =+k)() 0 ( 2-I(i -)). 
7c=1 

Thus there is a certain sense in which over a finite interval, anld except for a 
set of values of a of arbitrarily small positive measure, the total mass in (a 

sub-interval of length ? 2-/ tends uniformly to 0 with 2-#. Onl this basis, 
we may extend the functional ' (S; a) to all intervals S. It is already defined 
for all intervals with terminating binary end-points. If (c, d) is any interval 
whatever, let c1, c2,. be a sequence of terminating binarv numbers ap- 
proaching c, and let d1, d2,* be a similar sequence approaching d. Then 
except for a fixed set of values of a of arbitrarily small measure, 

(66) lim |3a((Cn, dn)+ a) ((na. , ; a) = ., 

and we may put 

(67) ((c, d ); a) =lim( (Cm, lin);a). 

Formula (57), and the fact that a (Si; a) and a (S2; a) vary indepeindently 
for non-overlapping intervals S, and S2, will be left untouched by this extension. 

Thus if X is an interval and TP a translation through an amount X, 
we can (lefine a (TV; a), and it will be equally continuous in A over any finite 
ranige of A except for a set of values of a of arbitrarily small measure. From 
this it follows at once that it is mieasurable in A and a together. Furthermore, 
we shall have 

(68) Measure of set of a's f or which a (TAv; a) belongs to C 

(68) Measure of set of a's for which a(Y; a) belongs to C. 

Thus j (,; a) is a homogeneous chaos. We shall call it the pure chlaos. 
If 4{ (4; a) ) is a functional dependent on the values of a(Y; a) for a 

finite number of intervals >, then if X is so great that none of the intervals 
Et, overlaps any translated interval TZ16,, 4{j (.; a) } will have a distribution 
entirely indepenident of D{H(TX; a) }. As every measurable functional may 
be approached in the L sense by such a functional, we see at onice that A (Y; x) 
is metrically transitive.6 

Except that the method of treatment has been adapted to the needs of ? 7, the 
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7. Pure multidimensional chaos. In order to avoid notational com- 
plexity, we shall not treat the general multidimensionial case explicitly, but 
shall treat the two-dimensional case by a method which will go over directly 
to the most general multidimensional case. If our initial sets S are the 
rectangles with terminating binary coirdiniates for their corners and sides 
parallel to the axes, and we replace (a, b) by the square with opposite vertices 
(p, q) and (p + r, q + r), an argument of exactly the same sort as that 
which we have used in the last paragraph will show that except in a set of 
cases of total probability not exceeding 

00 00 

(69) coilst. E E 2'+"21 o (exp(- 2(A4-+ )0)) -o(2A eXp(_ 2(A+1)E)) 
k=1 1=1 

the sum of ] (Sn; a) I for a denumerable set of binary rectangles with base 
< 2-, of the form (62), and adding up to make a vertical interval lving in 
the square (p, q), (p + r, q + r ), must be equal to or less than 

co 

(65) 2 E 2-(A+kC)(2-e) = 0(2-A(0-0 
k=1 

If we now add this expression up for all the base intervals of type (62) neces- 
sary to exhaust a horizontal interval of magnitude not exceeding 2-, we shall 
again obtain an expression of the form (65). It hence follows that if we take 
the total mass on the cobrdinate rectangles within a given square, this will 
tend to zero uniformly with their area, except for a set of values of a, of 
arbitrarily small measure. From this point the two-dimensionlal argument, 
and indeed the general multidimensional argument, follows exactly the same 
lines as the one-dimensional argument. It is only necessary to lnote that if 

a.,n- a. bn,-- bn C?j ->Cn d,,-- d 

then the rectangles (an, bi), (cm, dim) and (a,n b,L), (c1, d,1) differ at most by 
four rectangles of small area.7 

From this point on, we shall write 'P (S; a) for a pure chaos, whether in 
onie or in more dimensions. 

8. Phase averages in a pure chaos. If f (P) is a measurable step- 
function, the definition of 

(70) f (P) dpP (S; a) 

results of this section have previously been demonistrated bv the author. (Proceedilgs 
of the London Mathematical Society, 2, vol. 22 (1924), pp. 454-467). 

7Here we represent a rectangle by giving two opposite corners. 



916 NORBERT WIENER. 

is obvious, for it reduces to the finite sum 

N 

1nP (Sn; a) 

where f. are the N values assumed by f(P), and S,, respectively are the sets 
over which these values are assumed. Let us notice that 

(72) fw deal f f(P)dp'P(S;cx)j2E fdc f f,,nf P (Sm; a) P (S,,; a) 
? nl~~~~~~~~w=l n=1. 

N 1 

fn 12 m(p (Sal; (X) )2d 

1o N :L o u20 

N, I fn |12M ( S9l) 2- u2e- (Uf2/2 )dRu 

N 

- I fn 12M(S) = f(P) j2dVp 
1 

the integral being taken over the whole of space. In other words, the trans- 

formation from f(P) as a function of P, to f (P) dp'P (S; a) as a function 

of a, retains distance in Hilbert space.8 Such a transformation, by virtue of 
the Riesz-Fischer theorem, may always be extended by making limits in the 
mean correspond to limits in the mean. Thus both in the one-dimensional 
and in the many-dimensional case, we may define 

(73) f (P)ddpP (S; a) 1= i. m. fn(P)dp'P (S; ac) 

where f (P) is a function belonging to L2, and the sequence fL (P), f2 (P), 

is a sequence of step-functions converging in the mean to f (P) over the whole 
of space. The definition will be unambiguous, except for a set of values of a 

of zero measure. 
If S is any measurable set, we have 

(74) fda{P(S;a) } 2 Vmf(S) 0 
n exp(- 2M(S))du 

-(m (S) )/2 une (2/2)du 
-V 21r -0o 

0 = if n is odd 
= (M(S) )n/2(1-1 _ (I -3) 11 if v is even. 

8 Cf. Paley, Wiener, anid Zygmund, Alathematische Zeitschrift, vol. 37 (1933), 
pp. 647-668. 
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This represents (mn(S) n/2) multiplied by the number of distinct ways of 
representing n objects as a set of pairs. Remembering that if S1, S2, , S2n 
are non-overlapping, their distributions are independent, we see that if the 
sets :1, :i2, * * * , :i2n are either totally non-overlapping, or else such that when 
twvo overlap, they coincide, we have 

(75) P a) P (:I; )da H (>j; )P(:4; )d, 

where the product sign indicates that the 2n terms are divided into n sets of 
pairs, j and ic, and that these factors are multiplied together, while the addi- 
tion is over all the partitions of 1, , 2n into pairs. If 92n is replaced by 
2n + 1, the integral in (75) of course vanishes. 

Since 'P (S; a) is a linear functional of sets of points, alnd since both 
sides of (75) are linear with respect to each 'P (>X; a) separately, (75) still 
holds when ,1, >27 * * *, c,,. can be reduced to sums of sets which either coin- 
cide or do not overlap, and hence holds for all measurable sets. 

Now let f (P1, , Pn) be a measurable step-function: that is, a function 
taking only a finite set of finite values, each over a set of values P1, , P,& 
wMhich is a product-set of measurable sets in each variable PI. Clearly we 
may define 

(76) . .* f f(Pl, Pn) dplPS(8;a) ...dPnP (S; () 

in a way quite anialogous to that in which we have defined (70), and we shall 
have 

(77) fda . . ff(Pi, . Pn,)dp,'P(S;) *dpP (S;ci) 

f (Pl, P1, P2P2, .. , Pn Pn) dVpl dVpI 

where the summation is carried out for all possible divisions of the 2n P's 
into pairs. Similarly in the odd case 

(78) Xfda . . .f(pil ,P2n+1)dPl1 (S; ) dp,P (S; ) = 0. 

We miay apply (77) to give a meaning to 

(79) fda f If f [(PlF Pn)dp,'P (S; a).. dPnP (S; a) 12 

If f(P1,. , Pn) is a measurable step-functioni, and 

'Cf. Paley, Wiener, and Zygmund, loc. cit.. formula (2. 05). 
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(80) | f (P,n . Pn) IC fl (PI) fn(Pit) I 

jfk (P) I2dIdVp A (k =1 , 2, ) 
we shall have 

(81) fdc<j' f (pi, Pn)dp'P (S; c) dp.P (S; ) 

An A(2n - 1) (2n -3) . -.1 

If now f (Piy, P,) is an integrable function satisfying (80), but not 
necessarily a step-function, let 

(82) f(v; Pi, * *, Pn)= =-sgn f (Pi, Pn) [vf (Pi, , Pn) sgn f(Pi,, Pn) ] 
V 

Clearly almost everywhere 

(83) f * f (v; Pi, , Pn)dpiP(S;ca) dp,,P(S; a) 
n 

'II fk(P)dp'P (S; ) 

and 

(84) lim f b J f(ji; Pin - Pn) dp'P (S; ax) ...dpniP (S; 04) 
L,V4OOO 

- X js ~f (v; Pi. . , Pn) dp,9 (S; a,) dP2' (S; 

n n ff (P) dpP (S;) a 1) 
<H f-i~(P)d~'?(S;x) K? x fak(P)dpP (S; ,) J 

where R represents the exterior of a sphere of arbitrarily large volume. Let 
it be noted that both the numerator and the denominator of this fraction have 
Gaussian distributions, but that the mean square value of the numerator is 
arbitrarily small. Thus except for a set of values of a: of arbitrarily small 
measure, the right side of expression (84) is arbitrarily small, so that we may 
write 

(85) lim {f . . fOLt;P1, ,Pi)dp'P(S; a) dp,,'P(S;) 

- J*~~ (v; Pi, nPn) dp,'P(S; a) . dp,'P (S; a) 0. O 

Thus by dominated convergence, 

(86) lim .. ff (I,; Pj, . Pn)dp_ P(S; ) dp11' (S; ) 
/1> 0I 
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exists for almost all values of a, and we may write it by definition 

(87) * J (P1.* , Pn)dPlW (S; a) dp,j (S; ). 

This will clearly be unique, except for a set of values of a of zero measure. 
There will then be no difficulty in checking (77), (78), and (81). 

9. Forms of chaos derivable from a pure chaos. Let us assume that 

f(P) belongs to L2, or that f(P1, , P,q) is a measurable function satisfying 

(80). Let us write PQ for the vector in n-space connecting the points P and 

Q. Then the function 

(88) f (PP, , PP.)dP1' (S; a) dpnP (S; a) = F(P; oc) 

is a metrically transitive differentiable chaos. This results from the fact that 

IP (S; a) is a metrically transitive chaos, and that a translation of P gen- 

erates a similar translation of all the points Pk. The sum of a finite number 

of functions of the type (88) is also a metrically transitive differentiable chaos. 
To show that F(P; a) is measurable in P and a simultaneously, we merely 

repeat the argument of (83)-(86) with both P and a as variables. 
We shall call a chaos such as (88) a polynomial chaos homogeneously of 

the n-th degree, and a sum of such chaoses a polynombial chaos of the degree 

of its highest term. In this connection, we shall treat a conlstant as a chaos 

homogeneously of degree zero. 
By the multidimensional ergodic theorem, if 4( is a functional such that 

31 

(89) {I4(F(P; ) ) log+ H (F(P; ) )Ida < o 

we shall have 

(90) lim 4f (F (P; )dVp (F (P;a))da 

for almost all values of a. Since the distribution of F(P; a) is dominated by 

the product of a finite number of independent Gaussian distributions, we 

even have 

(91 ) 
I F (P; a) il lda: < ?o 

for all positive initegral values of n. In a wide class of cases this enables us 

to establish a relation of the type of (89). 
In formula (90), we have an algorithm for the computation of the right- 

hand side. For example, if 
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(92) F(P; a) f (PP,)dp,P (S; cz, 

anid P + Q is the vector sum of P and Q, we have for almost all a, 

(93) lim 1 ( uF(P + Q; a)P(Q; ) dVQ = f (P + Q)f (Q) dVQP 
r->,oo TVr)J 

the integral being taken over the whole of space; if 

(94) F(P; z) ..f f (PPI, PP2) dpP (S; ) dP2T (S; a) 

we have almost always 

(95) limV(r) R(P+Q; a)P(Q;a)dVQ 

'f f(Qp Q)dIVQ 12 + J4 f(P + Qp P + M)f (Q, M)dVQdVm 

+?41' f(P + Q, P + M)f(M, Q)dVQdVm; 
alid if 

(96) F (P; a) f (PP,PP2,PP3) dpP (S; )dp,,P (S; a) dpsP (S; a), 

we have almost everywhere 

(97) lim 71 F F(P+Q;z) (Q;z)dVQ 
r--oo (r) 

{f(Q QP P + M) f(M, S, S) 

+ f(QP QP P + M)f(S, M, S) + f(Q, Q, P + M)f(S, S, M) 
+f(Q,P+MPQ)f(M,S,S) + f(Q,P+M,Q)f(S,M,S) 
+ f(Q,P+AMPQ)f(S,S,M) +f(P+M,Q,Q)f(M,S,S) 
+ f(P + M, Q, Q)Xf(S, , S) + f(P + M, Q, Q)f(S, S, M) 

+ f (P + Q, P + M P + S)f(Q, MP S) 
+ f (P + Q,P I + M P + S)f (Q, S, M) 
+f(P+Q,P+M,P+S)f(MP ,Q,S) 
+ f(P+ Q,P?H+ ,P+S)f(M,S,Q) 
+ f(P+ Q,P+M,P+S)f(S,Q,M) 
+ f(P + Q, P + M,P + S)f(S,M, Q)}dIVQdVMdVs. 

We have similar results in the nion-homogeneous case. Thus if 

(98) F(P;) =A +j f (PP,) dp1P (S; a) 

+ f g(PP1, PP2)dp'P (S; a)dp2P (S; a), 
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we have almost everywhere 

1 C 
(99) lrn g~ F(P +Q; a)9P(Q;ca) dVQ 

V )V(r) IR 

A J (Q, Q)dVQ + A f g(Q, Q)dVQ 

+ f(P + Q)T(Q) dVQ + g(Q, Q)dVQ 12 

+ f (P + Q, P + M) f7(Q, M)dVQdVM 

+ f g(P + Q, P + M)g(M, Q)ddVQdVM. 

10. Chaos theory and spectra.10 The function 

(100) lim 1 F (P + Q)PF (Q)dVQ = G(P) 

occupies a central position in the theory of harmoniic analysis. If it exists 
and is continuous for every value of P, the function F (P) is said to have an 
n-dimensional spectrum. To define this spectrum, we put 

(101) Fr (P)~~~ 17(P) on 
(101) Fr(P) = ~ 0 elsewhere. 

It is then easy to show by an argument involving considerations like those of 

(49) that if 

(102) Gr(P) 17( ) f Fl(P + Q)Fr (Q)dVQ, 

the integral being taken over the whole of space, then we have 

(103) G(P) ; lim Gr (P) . 
r->O0 

Since, if 0 is the point with zero co6rdinates, by the Schwarz inequality, 

(104) I G (P)I ?< G (0) 

the limit in (103) is approached boundedly. 
If now we put 

(105) Or (U) = (27r) -(n/2) V (r m.i.m.f Fr(P)elUPdVp 

where S is the interior of a sphere of radius s about the origin, the n-fold 
Parseval theorem will give us 

10 Cf. N. Wiener, "Genieralized harmonic analysis," A cta Mathematica, vol. 55 

(1930). 



922 NORBERT WIENER. 

(106) |r(U)2 (27) ff Gr(P)eU.PdVp 

If M( U) is a funLetion with an absolutely integrable Fourier transform, we 
shall have 

00 , 

(107) J t cf(U) 2 M(U)dVu -(22trn Gr(P) dVp M(U)eiUPdVu, 

and hence 

(108) liminf I ckr(U) 2 MY(U)dVu =(2w7r)-f G)(P)dVJ V M(U)efU'PdVu 

which will always exist. Let us put 

(109) 9({M(U)) = (21r)- XfG(P)dVp f M(U)eU PdV`v7 

If S is any set of points of finite measure, and S (P) is its characteristic 
function, let us put 

(110) 51(S) 1.u.b. &1(M (U)), 
ll (U) ?S(U) 

and 
(111) .91(S) g. l. b. 9(M( U)). 

M (U) 1-S (U) 

If i(S) and SU(S) have the same value, we shall write it 91(S), and shall 
call it the spectral mass of F on S. It will be a noni-negative additive set- 
function of S, anld may be regarded as determining the spectrum of F. 

If f(Pi, ,P0) satisfies (80) and F(P; a) is defined as in (88), we 
know that for any given P, 

(112) G(P;cc) ==lim F(r) fF(P + Q; ac)f(Q; a) = F (P,I3) ,P(0, ) d: 
r-*OO V(r 

for almost all values of ca. This alone is not enough to assure that F(P, a,) 
has a spectrum for almost all values of a, as the sum of a non-denumerable set 
of sets of zero measure is not necessarily of zero measure. On the other hanid, 
except for a set of values of a of zero measure, G(P, a) exists for all points P 
with rational co6rdinates. 

We may even extend this result, and assert that if 

(113) F0(P;a) V() af F(S; a)dV17 
length of PS?0 

and 

(114) Go(P ;,) = ' li )fRFo (P + Q;c ) Po(Q;cc)dVQ, 
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then except for a set of values of a of zero measure, Go (P; a) exists for all 
points P with rational coordinates and all rational parameters 0, and it is 
easily proved that for almost all values of a, as 9 tends to 0 through rational 
values, 

(115i) lim lim 1(rf _Fo (Q; ) _ F(Q; ) 2dVQ=2 O 
0-+o r->oo Vr) 

Now, by the Schwarz inequality, 

(116) V (r) $ (P + Q; a) F (Q; a) dVQ 

V(r) 3 F9(P1 + Q; a)-P(Q; a))dVQ 

{5~G (O; V (r)f Fn(P + Q; a) -F(Pi + Q; a) 12 dVQ) 

o{ G(O; ) (V) SR d VQ (.vje) [.P+ S6-J> S6] F(S; a 1j2dVs) 

X (V(4l) [Jrlp+QVCr J VPi+Q(SSS ] dTQ) } 

? GO(O; o)O(| PP1 ji). 

It thus follows that if (114) exists for a given 6 and all P's with rational 
co6rdinates, it exists for that 9 and all real P's whatever. We may readily 
show that 
(117) Go(O; a) ? G(O; a). 

By another use of the Schwarz inequality, 

(118) V(r) I F (P + Q; a).P (Q; a) dVQ 

V(r) JR (P + Q; a)P(Q; a)dVQ 

y()frF?9(p?+ Q;a)-F(P++ Q; a)I O(Q; a)IdVQ 

+r(rarRF(P+Q;(zl jF0(Q;a) F(Q;a)|dVQ 

{G(0; )(z ) 
F 

rR F(P + Q; z) 
- 

(P+ Q; a)12 dVQ}i 

+ {G(O;z) V() J Fe(Q;ca) - F(Q;) !2 dVTQi. 

Combining (115) and (118). we see that except for a set of values of a of zero 

measure, we have for all P, 

(119) G (P; oc) ~lim Go(P; a). 
o30 
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We thus have an adequate basis for spectrum theory. This will extend, not 
merely to functions F(P, a) defined as in (88), but to finite sums of sueh 
functions. It will even extend to the case of any differentiable chaos F(P; a), 
for which F(P + Q; a)P(Q; a) is an integrable function of a, and for which 
(115) holds. For a metrically transitive chaos, this latter will be true if 

1 

(120) lim !Fo(P; )-F(P; ) 12 da == 0. 
0--0o 

Under this assumption, we have proved that F(P) has a spectrum, and the 
same spectrum, for all values of a. 

This enables us to answer a question which has been put several times, 
as to whether there is any relation between the spectrum of a chaos and the 
distribution of its values. There is no unique relation of the sort. The 
function 

(121) 4 g(P + Q)q(Q)ddVQ, 

where g belongs to L2, may be so chosen as to represent any Fourier transform 
of a positive function of L, and if f(P, Q, Ml) is a bounded step-function, the 
right-hand side of (97) will clearly be the Fourier transform of a positive 
function of L. In particular, let f (P1, P2, P3) f (P1)f (P2)f (P3), 

(122) F1 (P; a) = 4' (PPj) dpjP (S; a) 

and choose f, (Q) in such a way that 

(123) f (P + Q)Tl(Q) dVQ = right-hand side of (97). 

Then 

(124) X (l (P; a4) )2nd I 
fi(P) 12 dVpn) (2n - 1) (2n -3) ...1 

and if F(P, a) is defined as in (96), 

(125 )) 2nd I ( (p) i 2dVp)3n(6n- 1)(6n--3) .* 1) 

so that for all but at most one value of n, 

(126) ' (Fl(P; a)2n da J (F(P; a)) 2nda 

and we obtain in F and F1 two chaoses with identical spectra but different 
distribution functions. On the other hand, if 
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the chaoses 

(128) fi (PPj)dpfP (S; ) 

and 

(129) f f2(PPj)dpiP (S; a) 

will have the same distribution functions, but may have very different spectra. 

11. The discrete chaos."1 Let us now divide the whole of Euclidean 
n-space dichotomously into sets Sm.,,, such that every two sets Snln,L and Sin2,n2 

have the same measure, and that each S.m,n is made up of exactly two non- 
overlapping sets Sm+i,k Let us divide all these sets into two categories, 
" occupied," and " empty." Let us require that the probability that a set be 
empty depend only on its measure, and that the probability that two noii- 
overlapping sets be empty be the product of the probabilities that each be 
empty. Let us assume that both empty and occupied sets exist. Let every 
set contained in an empty set be empty, while if a set be occupied, let at least 
one-half always be occupied. We thus get anl infinite class of schedules of 
emptiness and occupiedness, and methods analogous to those of paragraph 6 
may be used to map the class of these schedules in an almost everywhere one- 
one way on the line (0, 1) of the variable a, in such a way that the set of 
schedules for which a given finite number of regions are empty or occupied 
will have a probability equal to the measure of the corresponding set of 
values of a. 

By the independence assumptioll, the probability that a given set s be 
empty must be of the form eAnm(Sm,`). If Sm,fn is divided into the 2" intervals 

Sml+v,nlj 
. . . n sn+v, l2V at the v-th stage of sub-division, the probability that just 

one is occupied and the rest are empty is 

(130) 2"(1 - exp(- Am(Sm,n)/2") exp (- 2 A 

This contilngency at the v + 1-st stage is a sub-case of this contingency at the 
v-th stage. If we interpret probability to mean the same thing as the measure 
of the correspondiing set of a's, then by moniotone conavergence, the probability 
that at every stage, all but one of the subdivisions of sS nn are empty, while the 
remaining one is occupied, will be the limit of (130), or 

(131) Am (Sm,n) exp (- A m (Sn?,n)) 

''The ideas of this paragraph are related to discussions the author has had with 
Professor voIn Neumann, and the main theorem is equivalent to one enunciated by the 
latter. 

10 
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Such a series of stages of subdivision will have as its occupied regions exactly 

those which contain a given point. 
The probability that the occupied regions are exactly those which containi 

two points is the probability that each half of Srn,n contain exactly one point, 

plus the probability that one-half is empty, and that in the occupied half, eacl 

quarter will contain exactly one point, plus and so on. This will be 

( 132 ) Am (Sn.) exp( Am (Sm,n)) $2 

+ 2 exp ( Am (Sm,i)) $Am(Sm,n) exp( Am t(Sin)2 

+ = exp (- Ain (Swi, n) 0 (Sn,) )2(4 8 

(Am (Smn,n) )2 
- A14(n1,n) exp (- Am(Sm,it)). 

If the probability that the occupied regions are exactly those containing e - 1 

points is 

(Am(-Mi))k-1 exp (-A !(Swi,n) 

theni a similar argument will show that the probability that the occupied 

regions are exactly those containing k- points will be 

k-i 1 1 1 1 
(133) s -- (Am(S,,k) 2 i)kexp(-An(SI,),1)) A1 n + -1- 

1=1 j\ / kk1\ 

k! (Am (S,?,,) ) A exp (-Am (S,, n)). 

Thus by mathematical induction, the probability that the occupied regions 

are exactly those containing k points will be 

k (Am(S11,n) )k exp (- Am(Sm, n)) 

and the sum of this for all values of k will be 

001 

In other words, except for a set of contingencies of probability zero, the 

occupied regions will be exactly those containing a given finite number of 

points. 



THE IIOMOGENEOUS CHAOS. 927 

We may proceed at once from the fact that the probability that a set S1 
contains exactly 71 poilnts is 

1(Am (Si) )I e-Ai (Si) 

while the probability that the non-overlapping set S2 containis exactly le 
points is 

7cI (Am (S2) ) ke-A7t(2 

to the fact that the probability that the set Sl + S2 contains exactly le 
points is 

pOlNSl 1S 

(135) 1 
(i)! (Am(Si))j(Am(S2))k-e-An1(S1+S2) 

k (Am(Si + S2) )ke-A (S1+S2)* 

From this, by moniotone convergence, it follows at once that the probability 
that any set S which is the sum of a denumerable set of our fundamental 
regions Sn,n should contain exactly k points is 

1(Am(S) )e-Am (S) 

It is then easy to prove this for all measurable sets S. 
We are now in a position to prove that the additive functional i (S; a), 

consisting in the number of points in the region S on the basis of the schedule 
corresponding to a, is a homogeneous metrically transitive chaos. The role 
which continuity filled in paragraphs 6 and 7, of allowing us to show that 

. , Vn(S; a) was measurable in yi, , y, and a, is now filled by the fact 
that the probability that any of the points in a region lie within a very small 
distance of the boundary, is for any Jordan region the probability that a small 
region be occupied, and is small. The metric transitivity of the chaos results 
as before from the independence of the distribution in non-overlapping regions. 

The discrete or Poisson chaos which we have thus defined is the chaos of 
an infinite random shot pattern, or the chaos of the gas molecules in a perfect 
gas in statistical equilibrium according to the old Maxwell statistical me- 
chanics. It also has important applications to the study of polycrystalline 
aggregates, and to similar physical problems. 

Two important formulae are 

(136) f 0 (S; ,)d, = eArn(S) f (Am(S) )k Am(S), 
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and 
> 1 oo~~~~0 7C 22 (137) f ( Z (S; o) ) 2doc e--Am (S) E - (Am (S) )k = (Am (S) )2 + Am (S). 

1 b - 

Let it be noted that if we define 

(138) 4 f(P)dpJi (S; a,) 

for a measurable step-function f(P) as in (70), by 

N 

(139) (Sn; 2), 
(72) is replaced by 

(140) dal f (P)dpOSl (S; a) - A f f(Q)dIVQ 2 
o ~~~~~~~~~~~~00 

N N 41 

E da, f.7,n- (Slul; a,) 9 (S,,; a,) 
m=1 n=1 

2 ? {A das fmrJi (S,,,,; a,) f (Q)dVQ + I A f (Q)dVQ 12) 

N 

= I fisn 12Am (Sm) 
rn=1 

AJ If(P)12d1p. 

Thus the transformation from f (P) as a fulction of P, to 

(141) f (P)dpOli (S; a) -A f (Q)dVQ 

as a function of a, retains distance in Hilbert space, apart from a constant 
factor, and if f(P) belongs to L and L 2 simultaneously, and {fn (P) } is a 
sequence of step-functions converging in the mean both in the L sense and in 
the L2 sense to f(P), we may define 

(142) ff(P)dpl (S; a) =AJ f(Q)dTQ 

+l. iM. ( fn(P)dPZ (S; a)-A fn(Q)dVQ). 

As in the case of (73), this definition is substalntially unique. We may prove 
the analogue of (93) in exactly the same way as (93) itself, and shall obtain 

(143) limv )jJu5 (f(P+Q)M; a)dmrli(S; a)-AJf(M)dTM 
} 

MPf f (J (MdTM)~I 
XA f Q)f(QiJ;a)dmYQ(S;a) -A .(M)dVm dVQ 

00 0 
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As we may see by appealing to the theory of spectra, one interpretation of this 

in the one-dimensional case is the following: If a linear resonator be set into 

motion by a haphazard series of impulses forming a Poisson chlaos, the effect, 
apart from that of a constant uniform stream of impulses, will have the same 
power spectrumn as the energy spectrum of the response of the resonator to a 
single impulse. 

12. The weak approximation theorem for the polynomial chaos. We 
wish to show that the chaoses of paragraph 9 are in some selnse everywhere 

delnse in the class of all metrically tralnsitive homogeneous chaoses. We shall 

show that if ~(S; a) is any homogeneous chaos in n dimensions, there is a 

sequence jk(S; 2) of polynomial chaoses as defined in paragraph 9, such that 

if S1, , Sv is any finite assemblage of bounded measurable sets in ni-space 

selected from among a denumerable set, anid 

,b 1 

(144) J (Sx;a) I,d < so (Xkv=1,2, ,v) 
0 

is finite, then 

41 ^1 

(145) f (Sj; a) . (Sv; a)da == lim nf (Si; a) * 5 * (Sv; a) da. 

We first make use of the fact that if the probability that a quantity u be 

greater in absolute value than A, be less thani 

( 146 ) 2 J e(u2/2B) du, (146) ~~~~~27rB A A 

- 

then if + (u) is any even measurable function bounded over ( so, so), we 

may find a polynomial /e(u), such that the mean value of 

(147) | A(u) -f(U) In, 

which will be 
1 

2/2) d (148) V2rB Joo l/(u) (u) In e-(u2/2B)dU 

is less than e. Since it is well known that if +(u) is a continuous function 

vanishing outside a finite interval, and 

00 

(149) E AnHn (u) e-(u2/2) 
l 
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is the series for +(u) in Hermite functions, then we have uniformly 

00 

(150) +(u) lim E AntnHn(u)e-(U2/2) 
t- 41-o 1 

to establish the existence of e(u), we need only prove it in the case in which 

(151) qi(u) =Uke-CU2 

for an arbitrarily small value of C: as for example for C 1/4n,B. We shall 

then have 
N (CU2)kl 00 (CU2)k u ke2/4B 

(152) t,(u) - . k U 
0 

so that by dominated convergence, alnd if we take N large enough, we may 

make 

1 
(U/B du<0 (153) 27rB 0 fI +V(u)-) (u) Ine-(u2/2B) du < (n n). 

Now let 

(154) O ( U f >K), 

andl let us put 

(155) 9 (P; a) V T (S; a) (S= interior of QP i ). 

The chaos 

(156) ?(K; ) -= K( (P, )) 

miay then- be approximated by polyiiolmlial chaoses in such a way as to approxi- 

mate simultaneously to all polynomials in ? (P; a) by corresponding poly- 

nomials in the approximatilng chaoses. Since the distribution of the values 

of b (P; a) will be Gaussian, with a root mealn square value proportional to a 

power of r, anld b (P; a) will be independent in spheres of radius N about two 

points PI anid P2 more remote from each other than 2r + 2-q, it follows that 

if we take K to be large enough, we may imake the probability that ? (P; o) 

differs from 0 between two spheres of radii respectively r + - and H about a 

given point where it differs from 0, as small as we wish. 

We lnow form the new chaos 

(157) J<, X (Q; x ) dVQ, 

which we may also approximate, with all its polynomial functionals, by a 

sequence of polynomial chaoses. The use of polynomial approximations 



THE IIOMOGENEOUS CHAOS. 931 

tending boulidedly to a step function over a finite ranige will show us that 

this is also true of the chaos determined by 

(158) 'Ih( ,'(Q; a)d=Q _ '&(P; ac). 
[PQI < x 

By a proper choice of the parameters, this can be made to have arbitrarily 

nearly all its mass uniformly distributed over regions arbitrarily near to 

arbitrarily small spheres, all arbitrarily remote from one another, except in 

an arbitrarily small fraction of the cases. We then form 

(159) ,( (Q; ) + 8) exp(- '12? dVQ)dQ='h(P;x) 

where 8 is taken to be very small. This chaos again, as far as all its poly- 

loniial functionals are concerned, will be approximable by polynomial chaoses. 

Since it is bounded away from 0 andl oo, and since over such a range the 

function 1/x may be approximated uniformly by polynomials, it follows that 

in our sense, 

(160) 1/c (P; a) 

is approximable by polynomial chaoses. 

If m' (P) is any measurable function for which arbitrarilyI high mlomeiits 

are always finite, it is easy to show that 

( 161 ) ( 
1 

,, (Q) (&9 (Q ; a) + 8) exp (- 12Q dVQ == 9f (P; a) 

is approximnable by polyinomial chaoses. Multiplying expressions (160) and 

(161), it follows that 

(162) c (p; a)/q (p; a) c(P. 

is approximable by polynomial chaoses. 

If A is a large eiiough coilstalit, dependinrg oni the choice of the constanit E, 

wve have 

(163) (exp( 
I ) dVp 

J2I)n2 pi > A\ 21k 
00 00 

xne- (X2/2k) dxl Xne- (w2/217 ) dx 

< exp 
( A(2 

12 
/ 

___n/2 
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Thus by the proper choice of the parameters of 9'h (P; a), if we take k small 
enough and then 8 small enough, the chaos (162) will consist as nearly as we 
wish, from the distributioln stalndpoilnt, of an inifinite assemblage of convex 
cells of great minimum dimension, in each of whichl the function m' (P) is 

repeated, with the origin moved to some point remote from the boundary. 
Now let j (S; a) be a metrically transitive homogeneous chaos. Let 

us form 

(164) a(r; ) =i7L- 
f .4(S; a)dx- dx,. 

Clearly by the fundamental theorem of the calculus, over any finite region in 

(xj1,' X, ), we shall have for almost all poilnts and almost all values of a, 

(165) a(S;) =lim $(r; S; ); 
r- O0 

anld if (144) holds, it is easy to show that 

(166) | 08(; S; c) 1 'da < coiist. 

From this it follows that 

(167) lim (7 S ; 2)- (S ; () I nda -? 

and by the ergodic theorem, except for a set of values of a of zero miieasure, 
as r tenids to 0 through a denumerable set of values, 

(168) lim 17( ) .fR Xn . (; a) 
-. . x. n(S; a,) Ildxl dxn = 0. 

With this result as an aid, enabling us to show that the distribution of H (S; a) 
is only slightly affected by averaging within a small sphere with a given radius, 
or even within any small region near enough to a small sphere with a given 
radius, we may proceed as in (161) and (162) and form the chaos 

(1T6 9) ~( S; a ) -- 1Z ~ XP x) 2rX )n/2,Z,...?( S; { 

n 

(-E xj2) 

X (Xi , Xn ; a) + 8) exp 12 - dxi... dx,,. 
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For almost all ,3, in each of the large cells of this chaos, (169) will have as 

nearly as we wish the same distribution as some 8Z1 ._ xJ(S; ac), where 

(x1, . , xn) lies in the interior of the cell, remote from the boundary. These 

cells may so be determined that except for those filling an arbitrarily small 

proportion of space, all are convex regions with a minimum dimension greater 

than some given quantity. 

To establish (143), it only remains to show that the average of a qualntity 
depending on a chaos over a large cell tends to the same limit as its average 

over a large sphere. To show this, we only need to duplicate the argument 

of paragraph 4, where we prove the multidimensional ergodic theorem, for 

large pyramids with the origin as a corner, instead of for large spheres about 

the origin. We may take the shapes and orientations of these pyramids to 

form a denumerable assemblage, from which we may pick a finite assemblage 

which will allow us to approach as closely as we want to any cell for which 

the ratio of the maximum to the minimum distance from the origin within 

it does not exceed a given amount. It is possible to show that by discarding 

cells whose measure is an arbitrarily small fraction of the measure of all space, 

the remaining cells will have this property. 

13. The physical problem. The transformation of a chaos. The 
statistical theory of a homogeneous medium, such as a gas or liquid, or a field 

of turbulence, deals with the problem, given the statistical configuration and 

velocity distribution of the medium at a given initial time, and the dynamical 

laws to which it is subject, to determine the configuration at any future time, 

with respect to its statistical parameters. This of course is not a problem in 

the first instance of the history of the individual system, but of the entire 

ensemble, although in proper cases it is possible to show that almost all sys- 

tems of the ensemble do actually share the same history, as far as certain 

specified statistical parameters are concerned. 

The dynamical transformations of a homogeneous system have the very 

important properties, that they are independent of any choice of origin in 

time or in space. Leaving the time variable out of it, for the moment, the 

simplest space transformations of a homogeneous chaos ' (S; ac) which have 

this property are the polynomial transformations which turn it into 

Ko + K1(x1-yi, X2-y22 ' ' Xn-yn)y.L, y.8(S; (x)dy. dy1 

(170) +. - 

+ j ... 8Kv (xi y (1), ,Xn -yn(l.) (yl()d y... 

Xn -Yn (p))y(l) I . ,8n(i) (S; a).. 

i( v), . . ., Yn (v) ( S; r)dy, ( 1) . . d,yn (V). 
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These are a sub-class of the genieral class of polynomial transformiatiolns 

Ko + K1(xi, , Xn; y1, ...,( yn) . .JS; a)dyi dyn 

(171) + - 

+ Jw***JiVXn***SXi; YiE) * *n .nt.) Kv*x*; yi() * * (l)) 

X (1).- (l) (S 2) . y (v), . . n(V) (S; a)dy1() .. dyli,. 

If a transformation of type (171) is invariant with respect to position inl space, 

it must belong to class (170). On the other haned, in space of a filite lnumber 

of dimensions and in any of the ordinary spaces of ani infinite number of 

dimensions, polynomials are a closed set of functions, anid henee every trans- 

formation may be approximated by a transformation of type (171). 

A polynomial transformation such as (170) of a polynomial chaos yields 
a polynomial chaos. If then we can approximate to the state of a dynamical 

system at time 0 by a polynomial chaos, and approximate to the transformation 

which yields its status at time t by a polynomial transformation, we shall 

obtaini for its state at time t, the approximation of another polynomial chaos. 

The theory of approximationi developed in the last sectionl will enable us to 

show this. 

On the other hand, the transformation of a dynamical system induced 

by, its own development is infinitely subdivisible in the time, anld except in 

the case of linear transformations, this is not a property of polynomial tranis- 

formations. Furthermore, wheni these transformations are nonl-linear, they 

are quite commonily not infinitely continruable in time. For example, let us 

colnsider the differential equation 

au au 
(172) + u 0. 

This correspondls to the history of a space-dlistribution of velocity transferred 

by particles moving with that velocity. Its solutions are determined by tbie 

equation 
(173) u(x, t) = u(x- tu(x, t) 0), 

or if ' is the iniverse funictioni of u(x, 0), 

(174) x- tt(x t) = +(X($, t)). 

Manifestly, if twvo particles with different velocities are allowecl to move long 
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enough to allow their space-time paths to cross, u(x, t) will cease to exist as a 

single-valued function. This will always be the case for some value of t if 

u(x, 0) is not constant, and for almost all values of t and a if it is a poly- 
nomial chaos. 

By Lagrange's formula, (174) may be inverted into 

(175) u (X, t) == E ( . _ (u (x 0) 8 

In a somewhat generalized sense, the partial sums of this f ormally represent 

polynomial transformations of the initial conditionls. However, it is only for 

a very special sort of bounded initial function, and for a finite value of tlle 

time, that they conlverge. It is only in this restricted sense that the poly- 

nomial transformation represents a true approximation to that given by the 

differential equation. 

It will be seen that the useful application of the theory of chaos to the 

study of particular dynamical chaoses involves a very careful study of the 

existence theories of the particular problems. In many cases, such as that of 

turbulence, the demands of chaos theory go considerably beyond the best 

knowledge of the present day. The difficulty is often both mathematical and 

physical. The mathematical theory may lead inevitably to a catastrophe 

beyolnd which there is no continuation, either because it is not the adequate 

preselntation of the physical facts; or because after the catastrophe the physical 

system contilnues to develop in a manner not adequately provided for in a 

matlhematical formulation which is adequate up to the occurrence of the 

catastrophe; or lastly, because the catastrophe does really occur physically, alnd 

the system really has no subsequent history. The hydrodynamical inlvesti- 

gatiolns required in the case of turbulence are directly in the spirit of the work 

of Oseen aiid Leray, but must be carried much further. 

The study of the history of a mechanical chaos will then proceed sIS 

follows: we first determine the transformation of the initial colnditions gel- 

erated by the dyinamics of the ensemble. We then determine under what 

assumptiolns the initial conditions admit of this transformation for either a 

finite or an infinite interval of time. Then- we approximate to the transforma- 

tion for a given range of values of the time by a polynomial transformatioll. 

Then, having regard to a definition of distance between two functions de- 

termined by the transformatioln, we approximate to the initial chaos by a 

polynomial chaos. Next we apply the polynomial transformation to the poly- 

nomial chaos, and obtain an approximating polynomial chaos at time t. 

Finally, we apply our algorithm of the pure chaos to determine the averages 
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of the statistical parameters of this chaos, and express these as functions 

of the time. 
The results of such an investigation belong to a little-studied branch of 

statistical mechanics: the statistical mechanics of systems not in equilibrium. 

To study the classical, equilibrium theory of statistical mechanics by the 

methods of chaos theory is not easy. As yet we lack a method of representing 

all forms of homogeneous chaos, which will tell us by inspection when two 

differ merely by an equimeasure transformation of the parameter of distribu- 

tion. In certain cases, in which the equilibrium is stable, the study of the 

history of a system with an arbitrary initial chaos will yield us for large values 

of t an approximation to equilibrium, but this will of Len fail to be so, particu- 

larLy in the case of differentiable chaoses, or the only equilibrium may be that 

in which the chaos reduces to a constalmt. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 
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