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Since the 1950s, mathematicians have successfully interpreted the traditional Eulerian numbers and g-Eulerian numbers
combinatorially. In this paper, the authors give a combinatorial interpretation to the general Eulerian numbers defined on general

arithmetic progressions {a,a + d,a + 2d, .. .}.

1. Introduction

Definition 1. Given a positive integer n, define (2, as the set
of all permutations of [n] = {1,2,3,...,n}. For a permutation
T =P1PaP3--- Py € Q,,iis called an ascent of w if p; < p;,q;
iis called a weak exceedance of 7 if p; > i.

It is well known that a traditional Eulerian number A, ;
is the number of permutations 7 € (,, that have k weak
exceedances [1, page 215]. And A, ; satisfies the recurrence:
A, =1mnz1),A,;=0(k>n),

An,k = kAnfl,k + (1’1 +1- k) Anfl,kfl (1 < k < 7’1) (1)

Besides the recursive formula (1), A, ; can be calculated
directly by the following analytic formula [2, page 8]:

= nfn+l
An,kZZ(_l)(k_l)< . > (<k<n). (2)

; 1
i=0

Definition 2. Given a permutation w = p;p,p3... p, € Q,,
define functions

maj Tt = z I
Pi>Pin (3)

a(nk,i)=#{m| maj m =i &  has k ascents}.

Since the 1950s, Carlitz [3, 4] and his successors have
generalized Euler’s results to g-sequences {1,4,4%.q",...}.

Under Carlitz’s definition, the g-Eulerian numbers A, ;(g) are
given by
) /KD ‘
A (q) =g RN G -ki) g, ()
=0

where functions a(n, k, ) are as defined in Definition 2.

In [5], instead of studying g-sequences, the authors have
generalized Eulerian numbers to any general arithmetic
progression

{a, a+d, a+2d, a+3d,...}. (5)

Under the new definition, and given an arithmetic pro-
gression as defined in (5), the general Eulerian numbers
A, (a, d) can be calculated directly by the following equation
[5, Lemma 2.6]:

. i n+1
Anlad)= Y ke -na-ar ("7 ). @)
i=0

Interested readers can find more results about the general
Eulerian numbers and even general Eulerian polynomials in

(5]
2. Combinatorial Interpretation of
General Eulerian Numbers

The following concepts and properties will be heavily used in
this section.



Definition 3. Let W, be the set of n-permutations with k
weak exceedances. Then [W, ;| = A, ;. Furthermore, given
apermutation w = py Py ... P, let Q, () = i, where p;, = n.

Given a permutation 77 € (,, it is known that 7 can be
written as a one-line form like 7 = p, p,p5 ... p,,, or w can be
written in a disjoint union of distinct cycles. For 7 written in
a cycle form, we can use a standard representation by writing
(a) each cycle starting with its largest element and (b) the
cycles in increasing order of their largest element. Moreover,
given a permutation 7 written in a standard representation
cycle form, define a function f as f(7r) to be the permutation
obtained from 7 by erasing the parentheses. Then f is known
as the fundamental bijection from Q,, to itself [6, page 30].
Indeed, the inverse map f ' of the fundamental bijection
function f is also famous in illustrating the relation between
the ascents and weak exceedances as follows [2, page 98].

Proposition 4. The function ' gives a bijection between the
set of permutations on [n] with k ascents and the set W, ;.

Example 5. The standard representation of permutation 7 =
5243716 s (2)(43)(7615) € Q,,and f (1) = 2437615;Q, () =
5; 7w = 5243716 has 3 ascents, while f’l(n) = (5243)(716) =
6453271 € W, , has 3 + 1 = 4 weak excedances because p, =
6>1,p,=4>2,p;=5>3,and p; =7 > 6.

Now suppose we want to construct a sequence consisting
of k vertical bars and the first n positive integers. Then the k
vertical bars divide these n numbers into k+ 1 compartments.
In each compartment, there is either no number or all the
numbers are listed in a decreasing order. The following
definition is analogous to the definition of [2, page 8].

Definition 6. A bar in the above construction is called
extraneous if either

(a) it is immediately followed by another bar; or

(b) each of the rest compartment is either empty or
consists of integers in a decreasing order if this bar
is removed.

Example 7. Suppose n = 7, k = 4; then in the following
arrangement

32|1]7654| 7)

the 1st, 2nd, and 4th bars are extraneous.

Now we are ready to give combinatorial interpretations
to the general Eulerian numbers A, (a,d). First note that
(6) implies that A_;(a,d) is a homogeneous polynomial of
degree n with respect to a and d. Indeed,

Ay (a,d)

1

k
=Y (-1 [(k+1- i)d—aJ"<”+. 1)
i=0
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k ; n+1
=Y (-1 [(k+1—i)(d—a)+(k—i)a]”< . >

1

0<j<n

The following theorem gives combinatorial interpreta-
tions to the coefficients ¢, (j), 0 < j < n.

Theorem 8. Let the general Eulerian numbers A, (a,d) be
written as in (8). Then

Cn,k (]) = #{T[ € Wn,k+1 ’j < Qn (T[) < 1’1} (10)
+#{meW,, ,1<Q,(m) < j}.

Proof. We can check the result in (10) for two special values
j =0and j = n quickly. By (2),

when j = 0, 6. (0) = X (~Di(k + 1 - i)" (") =
A

nk+l>

when j = 1, G () = Y5 (1) (k= )" (") = A4

1

Therefore, (10) is true for j = 0 and j = n.

Generally, for 1 < j < n— 1, we write down k bars with
k + 1 compartments in between. Place each element of [#] in
a compartment. If none of the k bars is extraneous, then the
arrangement corresponds to a permutation with k ascents.
Let B be the set of arrangements with at most one extraneous
bar at the end and none of integers {1, 2, .. ., j} locating in the
last compartment. We will show that ¢, (j) = |B|.

To achieve that goal, we use the Principle of Inclusion and
Exclusion. There are (k + 1) /k’ ways to put # numbers into
k + 1 compartments with elements {1,2,..., j} avoiding the
last compartments.

Let B; be the number of arrangements with the following
features:

(1) none of {1,2,..., j} sits in the last compartment;

(2) each arrangement in B; has at least i extraneous
bars.

(3) in each arrangement in B;, any two extraneous
bars are not located right next to each other.
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Then the Principle of Inclusion and Exclusion shows that

|B| = (k+ 1)" 7k’ -

Now we consider the value of B;, where 1 < i < k. Suppose

that we have k+1—i compartments with k—i bars in between.

There are (k + 1 — )" /(k — i)’ ways to insert # numbers into

these k + 1 — i compartments with first j integers avoiding

the last compartment and list integers in each component in

a decreasing order. Then insert i separating extraneous bars
into n + 1 positions. So we get

C(kt1 —i)”’j(k—i)j<nJ.r 1). (12)

1

B, +By+---+(-1)fB,. (1)

Plug formula (12) into (11); we have ¢, (j) = |B|.

Given an arrangement v € B, if we remove the bars, then
we obtain a permutation 77 € (,,. So without confusion, we
just use the same notation 77 to represent both an arrangement
in set B and a permutation on [#]. Now for each m € B, n
either

(case 1) has no extraneous bar and none of {1,2,.. ., j}
locates in the last compartment or

(case 2) has only one extraneous bar at the end.

If 7r is in case 1, then 7 has k ascents since each bar is
non-extraneous. And the last compartment of 71 is nonempty.
Therefore the last cycle of f *(7) hastobe (... .- Pg)- Inother

words, Q,(f~ L) = pg > jsincenoneof{1,2,...

in the last compartment. And by Proposition 4, f () €
Wn,k+1‘

If 7 is in case 2, then 7 has k— 1 ascents since only the last
bar is extraneous. Note that in this case, the arrangement with
no elements of {1, 2, ..., j} in the compartment second to the
last or the last nonempty compartment has been removed
by the Principle of Inclusion and Exclusion. Equivalently, at
least one number of {1,2, ..., j} hastobein the compartment
second to the last. So the last cycle of f () has to be
(n...p;),and Q,(f~ L)) = p; < j. Also by Propos1t10n 4,
f’l(n) €W,

Combing all the results above, statement (10) is correct.

Ol

, /1 locates

The next Theorem describes some interesting properties
of the coefficients c, .

Theorem 9. Let the coefficients ¢,y be as described in Theorem
8. Then,

D) Yo Gui ()
() ¢, () = cuu i (n—j), forall 0 < j k < n.

=nl, forany0 < j<m

Before we can prove Theorem 9, we need the following
lemma which is also interesting by itself.

Lemma 10. Given a positive integer n, then
#{m e Wy & Q, (m) = j}

{T[EWnnH k &Qn(n):n+1_j}
Joranyl <k, j<n

(13)

Proof. First of all, given a positive integer n, we define a
function g : Q,, — Q, as follows:

form=pipy...p, € Qs

(14)
gm=m+1-p)n+1-p,)...(n+1-p,).
For instance, for m = 53214 € Qs, g(n) = 13452, g is
obviously a bijection of Q,, to itself.

Now for some fixed 1 < k, j < n, suppose S ; = {7 ¢
Woe & Q,(m) = jhand Ti ; = {m € W, & Q) =
n+ 1~ ji. Forany m € §; ;, we write 7 in the standard
representation cycle form. So 7 = (p,...)...(n...§) and
fr) = p,...n...j has k — 1 ascents by Proposition 4.
Now we compose f(rr) with the bijection function g as just
defined. Then g(f(n)) =n+1-p,...1...n+ 1 — j has
n — k ascents, which implies that f’l(g(f(n))) hasn+1-k
weak excedances. So f '(g(f(n))) € W, 4 Note that
the last cycle of f’l(g(f(n))) has to be (n...n + 1 — j).
Therefore, f’l(g(f(n))) € Ty, Since both f and g are
bijection functions, f~'gf gives a bijection between S jand
Ty ;-

Now we are ready to prove Theorem 9.

Proof of Theorem 9. For part 1, by Theorem 8,

zcnk

Z (€ Wopp1 2 < Q, () < n}

k=0

n

+ Y #{m e W, 1<Q,(m) < j} (15)

k=0
n
= Z#{n € Wi} = Q| = .
k=0
For part 2, also by Theorem 8,

wi (7)

C

[
M=

# {T[ € Wn,k+1 > Qn (T[) = l}

i=j+1

+Z]:# 7€ Wy, Q, (r) = m}
m=1

n

z #lreW,, +,Q,(m)=n+1-i}

i=j+1

j
+ Z # {T[ € Wn,n+1—k >
m=1

Q,(m)=n+1-mj}
=#{meW,, ,1<Q,(m) <n-j}
+#{m e W g sn—j<Q,(m) <nj

= Cn,n—k (1’1 - ]) .

by Lemma 10

(16)



Remark 11. Using the analytic formula of ¢, ; (j) as in (9), part
2 of Theorem 9 implies the following identity:

i(—l)i(k -k - i) <” K >
i=0 i
(17)

n—k
= Z(—l)l(n+ 1 _k_l)j(n—k—l)”*f <n-}— 1>’

=0

where n is a positive integer, and 0 < §, k <n.

3. Another Combinatorial Interpretation of
¢,x(1) and ¢, ; (n-1)

In pursuing the combinatorial meanings of the coefficients
C,.x> the authors have found some other interesting properties
about permutations. The results in this section will reveal
close connections between the traditional Eulerian numbers
A randc, . (j),where j=1lor j=n-1

One fundamental concept of permutation combinatorics
is inversion. A pair (p;, p;) is called an inversion of the
permutation 7 = p;p,...p, ifi < jand p; > p; [6, page
36]. 'The following definition provides the main concepts of
this section.

Definition 12. For a fixed positive integer n, let AW, ; = {7 =
Pipaps---Pu | € Wypand py < pj (or (py, p,) is not
an inversion) and BW, ; = W, \ AW, ; (or (py,p,) is an
inversion).

It is obvious that | AW, ;| + |[BW,,;| = A, ;. The following
theorem interprets coeflicients ¢, ; (1) and ¢, ; (1~ 1) in terms
of AW, ; and BW, ;.

Theorem 13. Let the coefficients c, ;. of the general Eulerian
numbers be written as in (9). AW, ;. and BW,  are as defined
in Definition 12. Then

(1) Cn,k(l) = 2|AWn,k+1|:
(2) Cn)k(f’l - 1) = 2|BWn)k|.

Proof. For part (1), by Theorem 8, ¢, ; (1) = S| + |S,], where
Ss=lm=pipypo Il weWyy & p#n,S ={r=
pipy---pn | moe Wy & p = n} Given a permutation
T = PPy Py €Sy and p,#n, then both p;p,...p, and
Pl --- Py belong to Sy, so one of them has to bein AW, ;.
Ifrn=pp,...p, €S and p, = n, then € AW, ;,,, but
Paly--- P €8S, Therefore, (1/2)c,, (1) = [AW, ;4.

Part (2) can be proved using exactly the same method. So
we leave it to the readers as an exercise. O

[AW,, ;| and [BW,,| are interesting combinatorial
concepts by themselves. Note that generally speaking,
|AWn,k| 75 |BWn,k|‘ Indeed, |AWn,k| = |BWn,n+17k|‘

Theorem 14. For any positive integer n > 2, thesets AW, ;. and
BW,  are defined in Definition 12. Then |AW, | = |BW, .1 |
forl<k<n

Proof. It is an obvious result of part 2 of Theorems 9 and 13.
O
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Our last result of this paper is the following theorem
which reveals that both | AW, ;| and |BW, ;| take exactly the
same recursive formula as the traditional Eulerian numbers
A, asshown in (1).

Theorem 15. For a fixed positive integer n, let AW, ; and
BW, . be as defined in Definition 12; then

k |Aanl,k| + (1’1 +1- k) |Aanl,k71| = |AWn,k 5

(18)
K|BW, 4 +(n+1-k)|BW, ;1| = |BW,,|. (19

Proof. A computational proof can be obtained straightfor-
ward by using (9) and Theorem 13. But here we provide a
proof in a flavor of combinatorics.

Idea of the Proof. For (18), given a permutation A; =
PiPaP3- - Pu1 € AW, 14, for each position i with p; > i,
we insert n into a certain place of A;, such that the new
permutation A’ is in AW,,;. There are k such positions, so
we can get k new permutations in AW, ;. Similarly, if A, =
PiPapPse - Puy € AW, 1 4, for each position i with p; < i,
and the position at the end of A,, we insert » into a specific
position of A, and the resulting new permutation A’ is in
AW, ;. There are n + 1 — k such positions, so we can get
n + 1 - k new permutations in AW, ;. We will show that
all the permutations obtained from the above constructions
are distinct, and they have exhausted all the permutations in
AWn,k

For any fixed A" = mm,75... 71, € AW, i, then 7y < 77,,.
We dlassify A’ into the following disjoint cases:

Case a. Consider that 7; = n withi < n So A’ =

T TEy o TT Wy o Thy 47T,

al) m <, q,andm, > i

a2) my <7, 1, and m, < i

(al)
(a2)
(a3) my >m,_,m,<n—-1,and m, > i;
(ad) m; > m,_ |, m, <n—1,and 7, < §;
(a5)

a5) my >, ,andm, =n— L.

Case b. Consider that 7r,, = n. Sor; = n— 1 for some i < nand

A=mm,.. .. n-1...m, m
(b1) my < 7,15
b2) m, y <m <n-1l,andm, | =i
(b3) m,_, <m <n-l,andm, | <i
(b4) my =n- 1.

Based on the classifications listed above, we can construct a
map f: {AW, |, AW, ,} — AW, byapplying the idea
of the proof we have illustrated at the beginning of the proof.
To save space, the map f is demonstrated in Table 1. From
Table 1 we can see that in each case, the positions of inserting
n are all different. So all the images obtained in a certain case
are different. Since all the cases are disjoint, all the images
A' € AW, are distinct.
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TaBLE I: The map f: {AW, |, AW, |, |} — AW, ,.

A=piPr-- Pas

Position i

Condition

A€ AW,

Ac AW,

1<i<n-1
and

pzi

Pi>h

p; < py and
pnfl <n-1

P < pp and
pnfl =n-1

pyj=n-1
and j<n-1

Pu =n-1

A= PPy PP Pt Py
With p; < p,_.py < p
Case (al)

A= PPy PPy -+ PuaPiPun
With p; < p; < p,y <n—1

Case (a3)

A =pipye Pt = Wy - PPyt

With p; < p,p; =i
Case (b2)
A= PPy pianPyy P, i
Wlth pl < pnfl

Case (a5)

A =n-1p,...p, ,pn
Case (b4)

AC AW, 1x

1<i<n-1
and

pi<i

Pi>h

pi < py and
pnfl <n-1

pi < py and
Ppy = n-1

Al = PPy PicaPis1 - - P Pi
With p; < p,_1,py < p;
Case (a2)

A= pipy e PP o Pua PPt
With p; < p; < p,y <n—1
Case (a4)

A= pipye Pt = 1P P it
With p; < py,p; < i
Case (b3)

A =pip,..pon
Case (bl)

TaBLE 2: The map g : {BW,_,BW, | |} — BW, ;.

B=pips- Pus

Position i

Condition

B' ¢ BW,,

BeWB,

1<i<n-1
and

pzi

P> b

p<p<n-l

p<p=n-1

n>1

B'=py.. pnpiag <o Pua1 P
With p; > p,,_;and p; > i
Case (cl)

B =p...pnpy, o PiPasy
Withp, < p;<n—1,p;>i
Case (c3)
B'=np,...p_n—1p,, s PPy
Wlth pi =n- 1) pl > Pn—l
Case (d2)
B'=np,...p, P
With p, ; < p,

Case (d1)

BeWB, 14,

1<i<n-1
and

P <i

i=n-1

P <i
1<i<n-1
and
p=n-1

P> b

Py < pi

P> D= Puar

pi=n-1

B'= Py PPy P
With p, > p, , and p; <i
Case (c2)

B' = pro PP PiPsy
Withp < p;<n—-1,p; <i
Case (c4)

B, = pl . "pn72npn71
Case (c6)

B =P pianPigy - Paat = 1P,
Case (c5)




Similarly, for each B' = mym,m; ... 7, € BW,, thenm, >
7. We classify B’ into the following disjoint cases.

Case c. Consider that 7; = nwith1 <i <n-1So B =

Ty o T AT oo Ty (T,
cl) my > m, q,and w, > i

c2) my > m,_q,and 7, < i

c4
c5
c6

m <, <n-1,m,  <i

(c1)
(c2)
(3)my<m,_,<n-1,m,, 2%
(c4)
(5)myy=n—-1

(c6)

T, 1 =Hh

Case d. Consider that 7, = . So B' = nm, ..., o7, 1

(d1) m,_, <7,
(d2) m,_, >m,

To prove (19), we use a similar idea of proof as shown above.
B, = pipyps..-Pny € BW, 4, for each position i with
p; > i, we insert ninto a certain place of B, to get B; € AW,
IfBy = p1paps-. pp 1 € BW, 1 1, for each position i with
p; < i, and the position i where p; = n — 1, we insert » into
a specific position of B, to obtain By € AW,. Such a map
g : (BW, .. BW, ,} — BW,, isillustrated in Table 2.
And the distinct images under g exhaust all the permutations
in BW,;. O

Here is a concrete example for the constructions illus-
trated in Table 2.

Example 16. Suppose n = 4, k = 2. We want to obtain
BW,, = {3142,3412,3421, 4132,4213, 4312, 4321} from
BW;, = (321,231} and BW; | = {312}. For 321 € BW, ,, p, =
3 > 1, then it corresponds to B’ = 4213 which is case (d1) in
Table 2; p, = 2 > 2, then it corresponds to B’ = 3412 which is
case (cl) in Table 2. Similarly, we can construct {4312, 4321}
from 231 € BW,, and {3421,3142, 4132} from 312 € BW;,
using Table 2.
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