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Various new generalized forms of the Gegenbauer matrix polynomials are introduced using the integral representation method,
which allows us to express them in terms of Hermite matrix polynomials. Certain properties for these new generalized Gegenbauer
matrix polynomials such as recurrence relations and expansion in terms of Hermite matrix polynomials are derived. Further,
several families of bilinear and bilateral generating matrix relations for these polynomials are established and their applications
are presented.

1. Introduction

Theory of generalized andmultivariable special functions has
provided new means of analysis to deal with the majority
of problems in mathematical physics which find broad
practical applications. Further, an extension to the matrix
framework of special functions is special matrix functions.
The study of special matrix polynomials is important due
to their applications in certain areas of statistics, physics,
and engineering. In recent years, some results in the theory
of classical orthogonal polynomials have been extended to
orthogonal matrix polynomials [1], which forms an emergent
field and plays an important role from both the theoretical
and practical point of view. Orthogonal matrix polynomials
appear in connection with representation theory, matrix
expansion problems, prediction theory, and in the recon-
struction of matrix functions. The Laguerre and Hermite
matrix polynomials and their extension and generalizations
have been introduced and studied in [2–9] for matrices in
C𝑁×𝑁 whose eigenvalues are all situated in right open half-
plane.

If𝐷
0
is the complex plane cut along the negative real axis

and log(𝑧) denotes the principal logarithm of 𝑧, then 𝑧1/2

represents exp((1/2) log(𝑧)). If 𝐴 is a matrix in C𝑁×𝑁 with
𝜎(𝐴) ⊂ 𝐷

0
where 𝜎(𝐴) (the spectrum of 𝐴) is the set of all

the eigenvalues of 𝐴, then 𝐴1/2 = √𝐴 denotes the image by
𝑧
1/2 of the matrix functional calculus acting on the matrix 𝐴.

Throughout this paper, we assume that 𝐴 is a positive stable
matrix in C𝑁×𝑁; that is, 𝐴 satisfies the following condition:

Re (𝑧) > 0, for all 𝑧 ∈ 𝜎 (𝐴) . (1)

First, we recall that the Chebyshev polynomials (CP)
𝑈
𝑛
(𝑥) and Gegenbauer polynomials (GP) 𝐶𝜇

𝑛
(𝑥) are defined

in [10] as

𝑈
𝑛 (𝑥) =

[𝑛/2]

∑

𝑘=0

(−1)
𝑘
(𝑛 − 𝑘)!(2𝑥)

𝑛−2𝑘

(𝑛 − 2𝑘)!𝑘!
, (2)

𝐶
𝜇

𝑛
(𝑥) =

1

Γ (𝜇)

[𝑛/2]

∑

𝑘=0

(−1)
𝑘
Γ (𝑛 + 𝜇 − 𝑘) (2𝑥)

𝑛−2𝑘

(𝑛 − 2𝑘)!𝑘!
. (3)

Next, we recall certain recently introduced Hermite
matrix and Laguerre matrix polynomials. We mentioned
these matrix polynomials in Table 1.

Due to the importance of generalized Hermite matrix
polynomials, which find broad practical applications recently,
Batahan [2] introduces a matrix version of Chebyshev poly-
nomials in terms of 2VHMaP𝐻

𝑛
(𝑥, 𝑦, 𝐴) (Table 1(I)).

To give an idea of the procedure adopted in [11],
we use 2VHMaP 𝐻

𝑛
(𝑥, 𝑦, 𝐴) to introduce the generalized

Chebyshev matrix polynomials of the second kind (gCMaP)
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𝑈
𝑛
(𝑥, 𝑦, 𝐴) by the following integral representation and series

definitions [2, p.91]:

𝑈
𝑛
(𝑥, 𝑦, 𝐴) =

1

𝑛!
∫

∞

0

𝑒
−𝑡
𝑡
𝑛
𝐻
𝑛
(𝑥,

𝑦

𝑡
, 𝐴) 𝑑𝑡, (4)

𝑈
𝑛
(𝑥, 𝑦, 𝐴) =

[𝑛/2]

∑

𝑘=0

(−1)
𝑘
(𝑛 − 𝑘)!𝑦

𝑘
(𝑥√2𝐴)

𝑛−2𝑘

(𝑛 − 2𝑘)!𝑘!
(𝑛 ≥ 0) ,

(5)

respectively. The relevant generating function which was
obtained by using the integral representation (4) is given as

(𝐼 − 𝑥𝜉√2𝐴 + 𝑦𝜉
2
𝐼)
−1

=

∞

∑

𝑛=0

𝑈
𝑛
(𝑥, 𝑦, 𝐴) 𝜉

𝑛
. (6)

It is evident that

𝑈
𝑛
(𝑥, 𝑦, 𝐴) = 𝑦

𝑛/2
𝑈
𝑛
(
𝑥

√𝑦
,𝐴) . (7)

Motivated by the work of Dattoli et al. [11] who have
used the link between Hermite and Gegenbauer polynomials
to introduce generalized forms of Gegenbauer polynomials
where the strategy of generalization outlined in [11] benefits
from the variety of existing Hermite polynomials in this
paper, Hermite matrix polynomials and its various gener-
alizations were exploited to introduce a matrix version of
Gegenbauer polynomials.

Theuse of integral representations relating toGegenbauer
matrix polynomials and Hermite matrix polynomials is a
fairly useful tool of analysis which also offers interesting
criteria of generalizations. By combining the wealth of differ-
ent forms of Hermite matrix polynomials and the flexibility
of the proposed representations, we can establish within
such a framework a systematic procedure of generalization
involving new representations of Gegenbauer matrix and
generalizedGegenbauermatrix polynomials. Further, certain
properties involving newly introduced 3-variable 1-parameter
generalized Gegenbauer matrix polynomials (3V1PgGeMaP)
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) are derived which include recurrence

relations, expansion in the series of Hermite matrix polyno-
mial. The bilinear and bilateral generating matrix relations
for 3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) are also established

which further leads to certain new and known bilinear and
bilateral generating matrix relations as special case.

In Section 2, we introduce two forms of Gegenbauer
matrix polynomials. In Section 3, we introduce two forms
of generalized Gegenbauer matrix polynomials and derive
certain properties involving these polynomials. In Section 4,
we obtain expansion for 3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴).

In Section 5, we establish certain bilinear and bilateral gener-
ating matrix relations involving 3V1PgGeMaP. In Section 6,
concluding remarks are given.

2. Gegenbauer Matrix Polynomials

The 2VHMaP 𝐻
𝑛
(𝑥, 𝑦, 𝐴) (Table 1(I)) will be exploited here

to introduce a matrix version of Gegenbauer polynomials.

The Gegenbauer matrix polynomials (GeMaP) 𝐶(𝜇)
𝑛
(𝑥, 𝐴)

involving𝐻
𝑛
(𝑥, 𝑦, 𝐴) can be define in the following form:

𝐶
(𝜇)

𝑛
(𝑥, 𝐴) =

1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝑡
𝑡
𝑛+𝜇−1

𝐻
𝑛
(𝑥,

1

𝑡
, 𝐴) 𝑑𝑡. (8)

It is evident that in view of the relation that

𝑡
𝑛
𝐻
𝑛
(𝑥, 𝑦, 𝐴) = 𝐻

𝑛
(𝑥𝑡, 𝑦𝑡

2
, 𝐴) . (9)

Equation (8) can be expressed equivalently as

𝐶
(𝜇)

𝑛
(𝑥, 𝐴) =

1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝑡
𝑡
𝜇−1
𝐻
𝑛 (𝑥𝑡, 𝑡, 𝐴) 𝑑𝑡. (10)

Now, making use of (2) and formula (see [12])

𝑎
−]
=

1

Γ (])
∫

∞

0

𝑒
−𝑎𝑡
𝑡
]−1
𝑑𝑡, (11)

we find that the GeMaP 𝐶
(𝜇)

𝑛
(𝑥, 𝐴) are defined by the

following series:

𝐶
(𝜇)

𝑛
(𝑥, 𝐴) =

1

Γ (𝜇)

[𝑛/2]

∑

𝑘=0

(−1)
𝑘
Γ (𝑛 − 𝑘 + 𝜇) (𝑥√2𝐴)

𝑛−2𝑘

(𝑛 − 2𝑘)!𝑘!
.

(12)

Multiplying (10) by 𝜉𝑛 and then summing up over 𝑛, we
find
∞

∑

𝑛=0

𝐶
(𝜇)

𝑛
(𝑥, 𝐴) 𝜉

𝑛
=

1

Γ (𝜇)
∫

∞

0

𝑒
−𝑡
𝑡
𝜇−1

∞

∑

𝑛=0

𝐻
𝑛 (𝑥𝑡, 𝑡, 𝐴)

𝜉
𝑛

𝑛!
𝑑𝑡.

(13)

Now, using the generating function of 𝐻
𝑛
(𝑥, 𝑦, 𝐴)

(Table 1(I)) in the r.h.s. of the above equation and then using
relation (11) on the resultant equation, we get the following
generating function of the GeMaP 𝐶(𝜇)

𝑛
(𝑥, 𝐴):

∞

∑

𝑛=0

𝐶
(𝜇)

𝑛
(𝑥, 𝐴) 𝜉

𝑛
= (𝐼 − 𝑥𝜉√2𝐴 + 𝜉

2
𝐼)
−𝜇

(𝜇 ̸= 0) . (14)

Further, generalization of 𝐶(𝜇)
𝑛
(𝑥, 𝐴) can be obtained

by introducing the 2-variable 1-parameter Gegenbauer
matrix polynomials (2V1PGeMaP) 𝐶(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) by using

2VHMaP𝐻
𝑛
(𝑥, 𝑦, 𝐴) (Table 1(I)) in the following form:

𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) =

1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝑛+𝜇−1

𝐻
𝑛
(𝑥,

𝑦

𝑡
, 𝐴) 𝑑𝑡.

(15)

Also, in view of relation (9), the above equation can be
expressed equivalently as

𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) =

1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1
𝐻
𝑛
(𝑥𝑡, 𝑦𝑡, 𝐴) 𝑑𝑡.

(16)
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By employing the same procedure as above, we can easily
obtain the series definition and generating function for the
2V1PGeMaP 𝐶(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) as

𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴)

=
1

Γ (𝜇)

[𝑛/2]

∑

𝑘=0

(−𝑦)
𝑘
Γ (𝑛 − 𝑘 + 𝜇) (𝑥√2𝐴)

𝑛−2𝑘

(𝑛 − 2𝑘)!𝑘!𝛼
𝑛−𝑘+𝜇

,

(17)

∞

∑

𝑛=0

𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) 𝜉

𝑛
= (𝛼𝐼 − 𝑥𝜉√2𝐴 + 𝑦𝜉

2
𝐼)
−𝜇

(𝜇 ̸= 0) ,

(18)

respectively.
We note the following special cases:

𝐶
(𝜇)

𝑛
(𝑥, 1; 1, 𝐴) = 𝐶

(𝜇)

𝑛
(𝑥, 𝐴) , 𝐶

(𝜇)

𝑛
(𝑥, 1; 1, 2) = 𝐶

(𝜇)

𝑛
(𝑥) ,

𝐶
(1)

𝑛
(𝑥, 𝑦; 1, 𝐴) = 𝑈

𝑛
(𝑥, 𝑦, 𝐴) ,

(19)

where𝑈
𝑛
(𝑥, 𝑦, 𝐴), 𝐶(𝜇)

𝑛
(𝑥), and 𝐶(𝜇)

𝑛
(𝑥, 𝐴) denote the gCMaP

defined by (5), theGePdefined by (3), and theGeMaPdefined
by (12), respectively.

3. Generalized Gegenbauer
Matrix Polynomials

We use the 2I2VHMaP 𝐻
𝑛,𝑚
(𝑥, 𝑦, 𝐴) (Table 1(II)) to intro-

duce the 2-variable 1-parameter generalized Gegenbauer
matrix polynomials (2V1PgGeMaP)

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) in the

following form:

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴)

=
1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝑛+𝜇−1

𝐻
𝑛,𝑚

(𝑥,
𝑦

𝑡𝑚−1
, 𝐴) 𝑑𝑡.

(20)

It is evident that in view of the relation that

𝑡
𝑛
𝐻
𝑛,𝑚

(𝑥, 𝑦, 𝐴) = 𝐻
𝑛,𝑚

(𝑥𝑡, 𝑦𝑡
𝑚
, 𝐴) . (21)

Equation (20) can be expressed equivalently as

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) =

1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1
𝐻
𝑛,𝑚

(𝑥𝑡, 𝑦𝑡, 𝐴) 𝑑𝑡.

(22)

Now, making use of the series definition of𝐻
𝑛,𝑚
(𝑥, 𝑦, 𝐴)

(Table 1(II)) and formula (11), we find that the 2V1PgGeMaP
(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) are defined by the following series:

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴)

=
1

Γ (𝜇)

[𝑛/𝑚]

∑

𝑘=0

(−𝑦)
𝑘
Γ (𝑛 − (𝑚 − 1) 𝑘 + 𝜇) (𝑥√𝑚𝐴)

𝑛−𝑚𝑘

(𝑛 − 𝑚𝑘)!𝑘!𝛼
𝑛−(𝑚−1)𝑘+𝜇

.

(23)

It is indeed easy to note the following special cases:

(𝑚)
𝐶
(𝜇)

0
(𝑥, 𝑦; 𝛼, 𝐴) = 𝛼

−𝜇
𝐼,

(𝑚)
𝐶
(𝜇)

1
(𝑥, 𝑦; 𝛼, 𝐴) =

(𝑥√𝑚𝐴)𝜇

𝛼𝜇+1
,

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 0; 𝛼, 𝐴) =

(𝑥√𝑚𝐴)
𝑛

(𝜇)
𝑛

𝛼𝑛+𝜇𝑛!
,

(2)
𝐶
(𝜇)

𝑛
(𝑥, 1; 1, 𝐴) = 𝐶

(𝜇)

𝑛
(𝑥, 𝐴) ,

(2)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) = 𝐶

(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) ,

𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) =

𝑦
𝑛/2

𝛼𝑛+𝜇−𝑘
𝐶
(𝜇)

𝑛
(
𝑥

√𝑦
,𝐴) ,

(2)
𝐶
(1)

𝑛
(𝑥, 𝑦; 1, 𝐴) = 𝑈

𝑛
(𝑥, 𝑦, 𝐴) ,

(24)

where (𝜇)
𝑛
= Γ(𝜇 + 𝑛)/Γ(𝜇) is the Pochhammer symbol.

The generating function for
(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) can be

obtained with the help of the generating function of
2I2VHMaP (Table 1(II)). Multiplying (22) by 𝜉𝑛 and then
summing up over 𝑛, we find

∞

∑

𝑛=0

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) 𝜉

𝑛

=
1

Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1

∞

∑

𝑛=0

𝐻
𝑛,𝑚

(𝑥𝑡, 𝑦𝑡, 𝐴)
𝜉
𝑛

𝑛!
𝑑𝑡.

(25)

Further, using generating function of 2I2VHMaP in the
r.h.s. of the above equation and then using relation (11) on the
resultant equation, we get the following generating function
for the 2V1PgGeMaP

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴):

∞

∑

𝑛=0

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) 𝜉

𝑛
= (𝛼𝐼 − 𝑥𝜉√𝑚𝐴 + 𝑦𝜉

𝑚
𝐼)
−𝜇

(𝜇 ̸= 0) .

(26)

Now, we can establish the generalization of
(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦;

𝛼, 𝐴) by introducing the 3V1PgGeMaP
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

using 3I3VHMaP 𝐻(𝑚,𝑠)
𝑛

(𝑥, 𝑦, 𝑧, 𝐴) (Table 1(III)) in the fol-
lowing form:

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

=
1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝑛+𝜇−1

𝐻
(𝑚,𝑠)

𝑛
(𝑥,

𝑦

𝑡𝑚−1
,
𝑧

𝑡𝑠−1
, 𝐴) 𝑑𝑡.

(27)

It is evident that in view of the relation that

𝑡
𝑛
𝐻
(𝑚,𝑠)

𝑛
(𝑥, 𝑦, 𝑧, 𝐴) = 𝐻

(𝑚,𝑠)

𝑛
(𝑥𝑡, 𝑦𝑡

𝑚
, 𝑧𝑡
𝑠
, 𝐴) . (28)
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Equation (27) can be expressed equivalently as

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

=
1

𝑛!Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1
𝐻
(𝑚,𝑠)

𝑛
(𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝐴) 𝑑𝑡.

(29)

Further, proceeding on the same line as discussed above,
we can obtain the following series definition and generating
function for the 3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴):

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

=
1

Γ (𝜇)

[𝑛/𝑠]

∑

𝑘=0

[(𝑛−𝑠𝑘)/𝑚]

∑

𝑟=0

(−1)
𝑟
Γ (𝑛 − (𝑚 − 1) 𝑟 − (𝑠 − 1) 𝑘 + 𝜇)

(𝑛 − 𝑠𝑘 − 𝑚𝑟)!𝑘!𝑟!𝛼
𝑛−(𝑚−1)𝑟−(𝑠−1)𝑘+𝜇

× (−𝑦)
𝑟
𝑧
𝑘
(𝑥√𝑚𝐴)

𝑛−𝑠𝑘−𝑚𝑟

,

(30)
∞

∑

𝑛=0

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝜉

𝑛

= (𝛼𝐼 − 𝑥𝜉√𝑚𝐴 + 𝑦𝜉
𝑚
𝐼 − 𝑧𝜉

𝑠
𝐼)
−𝜇

(𝜇 ̸= 0) ,

(31)

respectively.
We note the following special cases:

(𝑚,𝑠)
𝐶
(𝜇)

0
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) = 𝛼

−𝜇
𝐼,

(𝑚,𝑠)
𝐶
(𝜇)

1
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) =

(𝑥√𝑚𝐴)𝜇

𝛼𝜇+1
,

(32a)

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 0; 𝛼, 𝐴) =

𝑚
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) , (32b)

(2,𝑠)
𝐶
(1)

𝑛
(𝑥, 𝑦, 0; 1, 𝐴) = 𝑈

𝑛
(𝑥, 𝑦, 𝐴) . (32c)

Furthermore, using the integral representation (29), we
establish somematrix differential recurrence relations for the
3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) with the help of the cor-

responding properties of the 3I3VHMaP 𝐻
(𝑚,𝑠)

𝑛
(𝑥, 𝑦, 𝑧, 𝐴).

For example, the recurrence relations satisfied by the
3I3VHMaP𝐻(𝑚,𝑠)

𝑛
(𝑥, 𝑦, 𝑧, 𝐴) are derived in [8]. Now, replac-

ing 𝑥 by 𝑥𝑡, 𝑦 by 𝑦𝑡, and 𝑧 by 𝑧𝑡 in the equations [8, p. 228
(3.11), 229 (3.14, 3.15, 3.20)] and using relation

𝜕

𝜕 (𝑡𝑥)
=
1

𝑡

𝜕

𝜕𝑥
, (33)

we get the new set of recurrence relation. Again, multiplying
the resultant equations by 𝑒−𝛼𝑡𝑡]−1/𝑛!Γ(]), integrating it with
respect to 𝑡 between the limits 0 to ∞, and then using

the integral representation (29), we get the following recur-
rence relations for

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴):

𝜕

𝜕𝑥
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) = 𝜇√𝑚𝐴

(𝑚,𝑠)
𝐶
(𝜇+1)

𝑛−1
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

(𝑛 ≥ 1)

𝜕
𝑚

𝜕𝑥𝑚
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

= (𝜇)
𝑚
(√𝑚𝐴)

𝑚

(𝑚,𝑠)
𝐶
(𝜇+𝑚)

𝑛−𝑚
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) (𝑛 ≥ 𝑚)

𝜕
𝑠

𝜕𝑥𝑠
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

= (𝜇)
𝑠
(√𝑚𝐴)

𝑠

(𝑚,𝑠)
𝐶
(𝜇+𝑠)

𝑛−𝑠
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) (𝑛 ≥ 𝑠) ,

𝑥
𝜕

𝜕𝑥
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

− 𝑚𝑦(√𝑚𝐴)
−1 𝜕

𝜕𝑥
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑚+1
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

− 𝑠𝑧(√𝑚𝐴)
−1 𝜕

𝜕𝑥
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑠+1
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

= 𝑛
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) ,

(34)

respectively.
Similarly, we can obtain other sets of recurrence relations

for 3V1PgGeMaP
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) with the help of the

corresponding properties of the 3I3VHMaP𝐻(𝑚,𝑠)
𝑛

(𝑥, 𝑦, 𝑧, 𝐴)

as

𝜕

𝜕𝑦
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) = −𝜇

(𝑚,𝑠)
𝐶
(𝜇+1)

𝑛−𝑚
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) ,

𝜕

𝜕𝑧
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) = 𝜇

(𝑚,𝑠)
𝐶
(𝜇+1)

𝑛−𝑠
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) ,

𝜕
𝑟

𝜕𝑦𝑟
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

= (−1)
𝑟
(𝜇)
𝑟 (𝑚,𝑠)

𝐶
(𝜇+𝑟)

𝑛−𝑚𝑟
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) ,

𝜕
𝑟

𝜕𝑧𝑟
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) = (𝜇)

𝑟 (𝑚,𝑠)
𝐶
(𝜇+𝑟)

𝑛−𝑠𝑟
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) .

(35)

Also, from the above relations we easily obtain

𝜕
𝑟

𝜕𝑥𝑟
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

+ (−1)
𝑟−1
(√𝑚𝐴)

𝑟 𝜕
𝑟

𝜕𝑦𝑟 (𝑚,𝑠)
𝐶
(𝜇)

𝑛+(𝑚−1)𝑟
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) = 0,
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𝜕
𝑟

𝜕𝑥𝑟
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

+ (−1)
−1
(√𝑚𝐴)

𝑟 𝜕
𝑟

𝜕𝑧𝑟 (𝑚,𝑠)
𝐶
(𝜇+𝑟)

𝑛+(𝑠−1)𝑟
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) = 0.

(36)

4. Expansion of 3V1PgGeMaP

In this section, we obtain the expansion of the 3V1PgGeMaP
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) in the series of 3I3VHMaP𝐻(𝑚,𝑠)

𝑛
(𝑥, 𝑦,

𝑧, 𝐴). In order to obtain this, we first derive the expansion
of (𝑥√𝑚𝐴)𝑛𝐼 in the series of 𝐻(𝑚,𝑠)

𝑛
(𝑥, 𝑦, 𝑧, 𝐴) by using the

generating function (Table 1(III)) in the form

(𝑥√𝑚𝐴)
𝑛

𝐼 = 𝑛!

[𝑛/𝑠]

∑

𝑘=0

[(𝑛−𝑠𝑘)/𝑚]

∑

𝑟=0

(−1)
𝑘
𝑦
𝑟
𝑧
𝑘

𝑘!𝑟! (𝑛 − 𝑠𝑘 − 𝑚𝑟)!

× 𝐻
(𝑚,𝑠)

𝑛−𝑠𝑘−𝑚𝑟
(𝑥, 𝑦, 𝑧, 𝐴) (𝑛 ≥ 0) .

(37)

Now, since

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

=
1

Γ (𝜇)

[𝑛/𝑠]

∑

𝑘=0

[(𝑛−𝑠𝑘)/𝑚]

∑

𝑟=0

(−1)
𝑟
Γ (𝑛 − (𝑚 − 1) 𝑟 − (𝑠 − 1) 𝑘 + 𝜇)

(𝑛 − 𝑠𝑘 − 𝑚𝑟)!𝑘!𝑟!𝛼
𝑛−(𝑚−1)𝑟−(𝑠−1)𝑘+𝜇

× (−𝑦)
𝑟
𝑧
𝑘
(𝑥√𝑚𝐴)

𝑛−𝑠𝑘−𝑚𝑟

,

(38)

which on multiplying by 𝑡𝑛, using relation (see [12])

∞

∑

𝑘=0

𝑘/𝑚

∑

𝑟=0

𝐴 (𝑟, 𝑘) =

∞

∑

𝑘=0

∞

∑

𝑟=0

𝐴 (𝑟, 𝑘 + 𝑚𝑟) , (39)

and then using expression (37) in the resultant equation yield

∞

∑

𝑛=0

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝑡

𝑛

=
1

Γ (𝜇)

∞

∑

𝑛,𝑘,𝑟=0

[𝑛/𝑠]

∑

𝑝=0

[(𝑛−𝑠𝑘)/𝑚]

∑

𝑞=0

(−1)
𝑝+𝑟
Γ (𝑛 + 𝑟 + 𝑘 + 𝜇)

(𝑛 − 𝑠𝑝 − 𝑚𝑞)!𝑘!𝑟!𝑝!𝑞!𝛼𝑛+𝑟+𝑘+𝜇

× 𝑦
𝑟+𝑞
𝑧
𝑘+𝑝
𝐻
(𝑚,𝑠)

𝑛−𝑠𝑝−𝑚𝑞
(𝑥, 𝑦, 𝑧, 𝐴) 𝑡

𝑛+𝑠𝑘+𝑚𝑟
.

(40)

Again, using relation (39) and in view of the fact

(−1)
𝑘

(𝑛 − 𝑘)!
=
(−𝑛)𝑘

𝑛!
, (41)

equation (40) becomes

∞

∑

𝑛=0

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝑡

𝑛

=

∞

∑

𝑛=0

[𝑛/𝑠]

∑

𝑘=0

[(𝑛−𝑠𝑘)/𝑚]

∑

𝑟=0

𝑘

∑

𝑝=0

𝑟

∑

𝑞=0

(((−1)
𝑟
(−𝑘)𝑝(−𝑟)𝑞

× (𝜇)
𝑛−(𝑠−1)𝑘−(𝑚−1)𝑟

)

× ((𝑛 − 𝑠𝑘 − 𝑚𝑟)!𝑘!𝑟!𝑝!𝑞!

× 𝛼
𝑛−(𝑠−1)𝑘−(𝑚−1)𝑟+𝜇

)
−1

)

× (((𝜇 + 𝑛 − (𝑠 − 1) 𝑘

− (𝑚 − 1)𝑟)
(𝑠−1)𝑝−(𝑚−1)𝑞

)

× (𝛼
(𝑠−1)𝑝−(𝑚−1)𝑞

)
−1

)

× 𝑦
𝑟
𝑧
𝑘
𝐻
(𝑚,𝑠)

𝑛−𝑠𝑘−𝑚𝑟
(𝑥, 𝑦, 𝑧, 𝐴) 𝑡

𝑛
,

(42)

which on equating coefficients of 𝑡𝑛 on both sides gives

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

=

∞

∑

𝑛=0

[𝑛/𝑠]

∑

𝑘=0

[(𝑛−𝑠𝑘)/𝑚]

∑

𝑟=0

(−1)
𝑟
(𝜇)
𝑛−(𝑠−1)𝑘−(𝑚−1)𝑟

(𝑛 − 𝑠𝑘 − 𝑚𝑟)!𝑘!𝑟𝛼
𝑛−(𝑠−1)𝑘−(𝑚−1)𝑟+𝜇

× 𝑦
𝑟
𝑧
𝑘
Λ
(𝜇)

𝑘,𝑟,𝑛
𝐻
(𝑚,𝑠)

𝑛−𝑠𝑘−𝑚𝑟
(𝑥, 𝑦, 𝑧, 𝐴) 𝑡

𝑛
,

(43)

where

Λ
(𝜇)

𝑘,𝑟,𝑛

:=

𝑘

∑

𝑝=0

𝑟

∑

𝑞=0

(−𝑘)𝑝(−𝑟)𝑞(𝜇 + 𝑛−(𝑠−1) 𝑘 − (𝑚−1) 𝑟)(𝑠−1)𝑝−(𝑚−1)𝑞

𝑝!𝑞!𝛼(𝑠−1)𝑝−(𝑚−1)𝑞
.

(44)

5. Bilinear and Bilateral Generating Matrix
Relations for

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥,𝑦, 𝑧; 𝛼, 𝐴)

In order to derive several families of bilinear and bilat-
eral generating matrix relations for the 3V1PgGeMaP
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴), we first state our result as follows.

Theorem 1. Corresponding to nonvanishing functions
Ω
𝜇
(𝑞
1
, . . . , 𝑞

𝑟
) consisting of r (real or complex) variables

𝑞
1
, . . . , 𝑞

𝑟
(𝑟 ∈ N) and of complex order ], let

Λ ],𝜂 (𝑞1, . . . , 𝑞𝑟; 𝜓) :=

∞

∑

𝑘=0

𝑎
𝑘
Ω]+𝜂𝑘 (𝑞1, . . . , 𝑞𝑟) 𝜓

𝑘
, (45)
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and for (𝑎
𝑘
̸= 0, 𝑘 ∈ N

0
, 𝜂 ∈ C),

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑞1, . . . , 𝑞𝑟; 𝜉)

:=

𝑛/𝑝

∑

𝑘=0

𝑎
𝑘
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)Ω]+𝜂𝑘 (𝑞1, . . . , 𝑞𝑟) 𝜉

𝑘
,

(46)

where 𝑛, 𝑝 ∈ N and 𝐴 is a matrix in C𝑁×𝑁 satisfying the
condition (1). Then one has

∞

∑

𝑛=0

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑞1, . . . , 𝑞𝑟;

𝛾

𝑡𝑝
) 𝑡
𝑛

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

× Λ ],𝜂 (𝑞1, . . . , 𝑞𝑟; 𝛾) (𝜇 ̸= 0) ,

(47)

provided that each member of (47) exists.

Proof. Denote, for convenience, the first member of the
assertion (47) of Theorem 1 by 𝑆. Then, upon substituting for
the polynomial Θ

𝑛,𝑝,],𝜂(𝑥, 𝑦, 𝑧, 𝛼; 𝑞1, . . . , 𝑞𝑟; 𝜉) which comes
from (46) into the left hand side of (47), we get

𝑆 =

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0

𝑎
𝑘
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)Ω]+𝜂𝑘 (𝑞1, . . . , 𝑞𝑟)

× 𝛾
𝑘
𝑡
𝑛−𝑝𝑘

.

(48)

Now replacing 𝑛 by 𝑛 + 𝑝𝑘 in the r.h.s. of (48) and using
relation (39) in the resultant equation, we find

𝑆 =

∞

∑

𝑛=0

∞

∑

𝑘=0

𝑎
𝑘 (𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)Ω]+𝜂𝑘 (𝑞1, . . . , 𝑞𝑟) 𝛾

𝑘
𝑡
𝑛

=

∞

∑

𝑛=0

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝑡

𝑛

∞

∑

𝑘=0

𝑎
𝑘
Ω]+𝜂𝑘 (𝑞1, . . . , 𝑞𝑟) 𝛾

𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

Λ ],𝜂 (𝑞1, . . . , 𝑞𝑟; 𝛾) ,

(49)

which proves the assertion (47) of Theorem 1.

In order to discuss further applications of Theorem of 1,
we consider themultivariable functionΩ]+𝜂𝑘(𝑞1, . . . , 𝑞𝑟) (𝑘 ∈

N
0
, 𝑟 ∈ N) in terms of the functions of one or more

variables. For example, consider the case of 𝑟 = 2 and
Ω]+𝜂𝑘(𝑢, V) = 𝐿

(𝐵,𝜆)

]+𝜂𝑘(𝑢, V) in Theorem 1, where 𝐿(𝐵,𝜆)]+𝜂𝑘(𝑢, V)
denotes the 2VLMaP (Table 1(IV)). Then we obtain the
following result which provides a class of bilateral generating
matrix relations for 3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) and

2VLMaP 𝐿(𝐴,𝜆)
𝑛

(𝑥, 𝑦).

Corollary 2. Let

Λ ],𝜂 (𝑢, V; 𝜓) :=
∞

∑

𝑘=0

𝑎
𝑘
𝐿
(𝐵,𝜆)

]+𝜂𝑘 (𝑢, V) 𝜓
𝑘
, (50)

and for (𝑎
𝑘
̸= 0, ], 𝜂 ∈ N

0
),

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V; 𝜉)

:=

𝑛/𝑝

∑

𝑘=0

𝑎
𝑘
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝐿

(𝐵,𝜆)

]+𝜂𝑘 (𝑢, V) 𝜉
𝑘
,

(51)

where 𝑛, 𝑝 ∈ N, and 𝐴 and 𝐵 is a matrix in C𝑁×𝑁 satisfying
the condition (1) and 𝐵 + 𝑛𝐼 invertible for every integer 𝑛 > 0.
Then we have
∞

∑

𝑛=0

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V;

𝛾

𝑡𝑝
) 𝑡
𝑛

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

Λ ],𝜂 (𝑢, V; 𝛾) (𝜇 ̸= 0) ,

(52)

provided that each member of (52) exists.

Remark 3. Using the generating matrix functions for
2VLMaP 𝐿(𝐵,𝜆)

𝑘
(𝑢, V) (Table 1(IV)) and taking 𝑎

𝑘
= 1 = 𝜂 and

] = 0 in the generating matrix relations (52), we get

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝐿

(𝐵,𝜆)

𝑘
(𝑢, V) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

× (1 − 𝛾V)−(𝐵+𝐼)

× exp(
−𝜆𝑢𝛾

1 − 𝛾V
) (

󵄨󵄨󵄨󵄨𝛾V
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) ,

(53)

which for V = 1 gives

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝐿

(𝐵,𝜆)

𝑘
(𝑢) 𝛾
𝑘
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

× (1 − 𝛾)
−(𝐵+𝐼)

× exp(
−𝜆𝑢𝛾

1 − 𝛾
) (

󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) .

(54)

Also, taking 𝑧 = 0 and using relation (32b) in (53), we find

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚)
𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦; 𝛼, 𝐴) 𝐿

(𝐵,𝜆)

𝑘
(𝑢, V) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼)
−𝜇

× (1 − 𝛾V)−(𝐵+𝐼)

× exp(
−𝜆𝑢𝛾

1 − 𝛾V
) (

󵄨󵄨󵄨󵄨𝛾V
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) ,

(55)

where
(𝑝)
𝐶
(𝜌)

𝑘
(𝑢, V; 𝛽, 𝐵) denotes the 2V1PgGeMaP defined by

(25) and for V = 1, (55) reduces to the bilateral generating
matrix relations for 2V1PgGeMaP

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) and

LMaP 𝐿(𝐴,𝜆)
𝑛

(𝑥).
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Further taking 𝛼 = 1 = 𝜇, 𝑚 = 2, 𝑧 = 0 and using
relation (32c) in (53), we find

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0

𝑈
𝑛−𝑝𝑘

(𝑥, 𝑦, 𝐴) 𝐿
(𝐵,𝜆)

𝑘
(𝑢, V) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝐼 − 𝑥𝑡√2𝐴 + 𝑦𝑡
2
𝐼)
−1

× (1 − 𝛾V)−(𝐵+𝐼)

× exp(
−𝜆𝑢𝛾

1 − 𝛾V
) (

󵄨󵄨󵄨󵄨𝛾V
󵄨󵄨󵄨󵄨 < 1) ,

(56)

which for𝑦 = V = 1 gives a known bilateral generatingmatrix
relations [13, p.30].

Again, set 𝑟 = 2 and Ω]+𝜂𝑘(𝑢, V) = 𝑓]+𝜂𝑘(𝑢, V, 𝐵) in
Theorem 1, where 𝑓]+𝜂𝑘(𝑢, V, 𝐵) denotes the 2VMLMaP
(Table 1(V)). Then, we obtain the following result which
provides a class of bilateral generating matrix relations
for 3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) and 2VMLMaP

𝑓
(𝐴,𝜆)

𝑛
(𝑥, 𝑦).

Corollary 4. Let

Λ ],𝜂 (𝑢, V; 𝜓) :=
∞

∑

𝑘=0

𝑎
𝑘
𝑓
(𝐵,𝜆)

]+𝜂𝑘 (𝑢, V) 𝜓
𝑘
, (57)

and for (𝑎
𝑘
̸= 0, ], 𝜂 ∈ N

0
),

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V; 𝜉)

:=

𝑛/𝑝

∑

𝑘=0

𝑎
𝑘
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝑓

(𝐵,𝜆)

]+𝜂𝑘 (𝑢, V) 𝜉
𝑘
,

(58)

where 𝑛, 𝑝 ∈ N, and 𝐴 and 𝐵 is a matrix in C𝑁×𝑁 satisfying
the condition (1). Then we have
∞

∑

𝑛=0

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V;

𝛾

𝑡𝑝
) 𝑡
𝑛

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

Λ ],𝜂 (𝑢, V; 𝛾) (𝜇 ̸= 0) ,

(59)

provided that each member of (59) exists.

Remark 5. Using the generating matrix functions for
2VMLMaP 𝑓(𝐵,𝜆)

𝑘
(𝑢, V) (Table 1(V)) and taking 𝑎

𝑘
= 1 = 𝜂

and ] = 0 in the generating matrix relations (59), we get

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝑓

(𝐵,𝜆)

𝑘
(𝑢, V) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

× (1 − 𝛾V)−𝐵

× exp (𝜆𝑢𝛾) (𝜇 ̸= 0) ,

(60)

which for V = 1 gives

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) 𝑓

(𝐵,𝜆)

𝑘
(𝑢) 𝛾
𝑘
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

× (1 − 𝛾)
−𝐵

× exp (𝜆𝑢𝛾) (𝜇 ̸= 0) .

(61)

Also, taking 𝑧 = 0 and using relation (32b) in (60), we
find

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚)
𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦; 𝛼, 𝐴) 𝑓

(𝐵,𝜆)

𝑘
(𝑢, V) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼)
−𝜇

× (1 − 𝛾V)−𝐵

× exp (𝜆𝑢𝛾) (𝜇 ̸= 0) ,

(62)

which for V = 1 gives bilateral generating matrix relations for
2V1PgGeMaP

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) and MLMaP 𝑓(𝐴,𝜆)

𝑛
(𝑥).

Further taking 𝛼 = 1 = 𝜇,𝑚 = 2, 𝑧 = 0 and using relation
(32c) in (60), we find
∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0

𝑈
𝑛−𝑝𝑘

(𝑥, 𝑦, 𝐴) 𝑓
(𝐵,𝜆)

𝑘
(𝑢, V) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝐼 − 𝑥𝑡√2𝐴 + 𝑦𝑡
2
𝐼)
−1

(1 − 𝛾V)−𝐵 exp (𝜆𝑢𝛾) .

(63)

Next, set 𝑟 = 2 and Ω]+𝜂𝑘(𝑢, V) = 𝑈]+𝜂𝑘(𝑢, V, 𝐵) in
Theorem 1, where 𝑈]+𝜂𝑘(𝑢, V, 𝐵) denotes the gCMaP defined
by (5). Then, we obtain the following result which provides a
class of bilateral generatingmatrix relations for 3V1PgGeMaP
(𝑚,𝑠)

𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) and gCMaP 𝑈

𝑛
(𝑥, 𝑦, 𝐴).

Corollary 6. Let

Λ ],𝜂 (𝑢, V; 𝜓) :=
∞

∑

𝑘=0

𝑎
𝑘
𝑈]+𝜂𝑘 (𝑢, V, 𝐵) 𝜓

𝑘 (64)

and for (𝑎
𝑘
̸= 0, ], 𝜂 ∈ N

0
),

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V; 𝜉)

:=

𝑛/𝑝

∑

𝑘=0

𝑎
𝑘
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)𝑈]+𝜂𝑘 (𝑢, V, 𝐵) 𝜉

𝑘
,

(65)

where 𝑛, 𝑝 ∈ N, and 𝐴 and 𝐵 is a matrix in C𝑁×𝑁 satisfying
the condition (1). Then we have
∞

∑

𝑛=0

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V;

𝛾

𝑡𝑝
) 𝑡
𝑛

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

Λ ],𝜂 (𝑢, V; 𝛾) (𝜇 ̸= 0) ,

(66)

provided that each member of (66) exists.

Remark 7. Using the generating matrix functions (6) for
gCMaP 𝑈

𝑘
(𝑢, V, 𝐵) and taking 𝑎

𝑘
= 1 = 𝜂 and ] = 0 in the

generating matrix relations (66), we get
∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)𝑈

𝑘 (𝑢, V, 𝐵) 𝛾
𝑘
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

(𝐼 − 𝑢𝛾√2𝐵 + V𝛾2𝐼)
−1

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) ,

(67)
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which for V = 1 gives

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)𝑈

𝑘 (𝑢, 𝐵) 𝛾
𝑘
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

(𝐼 − 𝑢𝛾√2𝐵 + 𝛾
2
𝐼)
−1

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) .

(68)

Also, taking 𝑧 = 0 and using relation (32b) in (67), we
find

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚)
𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦; 𝛼, 𝐴)𝑈

𝑘 (𝑢, V, 𝐵) 𝛾
𝑘
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼)
−𝜇

(𝐼 − 𝑢𝛾√2𝐵 + V𝛾2𝐼)
−1

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) ,

(69)

which for V = 1 gives bilateral generating matrix relations for
2V1PgGeMaP

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) and CMaP 𝑈

𝑛
(𝑥, 𝐴).

Further, taking 𝛼 = 1 = 𝜇, 𝑚 = 2, and 𝑧 = 0 and using
relation (32c) in (67), we find a bilinear generating matrix
relations

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0

𝑈
𝑛−𝑝𝑘

(𝑥, 𝑦, 𝐴)𝑈
𝑘 (𝑢, V, 𝐵) 𝛾

𝑘
𝑡
𝑛−𝑝𝑘

= (𝐼 − 𝑥𝑡√2𝐴 + 𝑦𝑡
2
𝐼)
−1

(𝐼 − 𝑢𝛾√2𝐵 + V𝛾2𝐼)
−1

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1) ,

(70)

which for 𝑦 = V = 1 gives known bilinear generating matrix
relations [13, p.31].

Again, set 𝑟 = 2 and Ω]+𝜂𝑘(𝑢, V) = 𝐻]+𝜂𝑘(𝑢, V, 𝐵) in
Theorem 1, where 𝐻]+𝜂𝑘(𝑢, V, 𝐵) denotes the 2VHMaP
(Table 1(I)). Then we obtain the following result which
provides a class of bilateral generating matrix relations
for 3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) and 2VHMaP

𝐻
𝑛
(𝑥, 𝑦, 𝐴).

Corollary 8. Let

Λ ],𝜂 (𝑢, V; 𝜓) :=
∞

∑

𝑘=0

𝑎
𝑘
𝐻]+𝜂𝑘 (𝑢, V, 𝐵) 𝜓

𝑘 (71)

and for (𝑎
𝑘
̸= 0, ], 𝜂 ∈ N

0
),

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V; 𝜉)

:=

𝑛/𝑝

∑

𝑘=0

𝑎
𝑘
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)𝐻]+𝜂𝑘 (𝑢, V, 𝐵) 𝜉

𝑘
,

(72)

where 𝑛, 𝑝 ∈ N, and 𝐴 and 𝐵 is a matrix in C𝑁×𝑁 satisfying
the condition (1). Then we have
∞

∑

𝑛=0

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V;

𝛾

𝑡𝑝
) 𝑡
𝑛

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

Λ ],𝜂 (𝑢, V; 𝛾)

(𝜇 ̸= 0) ,

(73)

provided that each member of (73) exists.

Remark 9. Using the generating matrix functions for
2VHMaP 𝐻

𝑘
(𝑢, V, 𝐵) and taking 𝑎

𝑘
= 1/𝑘!, 𝜂 = 1 and ] = 0

in the generating matrix relations (73), we get
∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝k (𝑥, 𝑦, 𝑧; 𝛼, 𝐴)𝐻𝑘 (𝑢, V, 𝐵)
𝛾
𝑘

𝑘!
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

exp (𝑢𝛾√2𝐵 − V𝛾2𝐼)

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) ,

(74)

which for V = 1 yields
∞

∑

𝑘=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)𝐻

𝑘 (𝑢, 𝐵) 𝛾
𝑘
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

exp (𝑢𝛾√2𝐵 − 𝛾2𝐼)

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) .

(75)

Also, taking 𝑧 = 0 and using relation (32b) in (74), we find
∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚)
𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦; 𝛼, 𝐴)𝐻

𝑘 (𝑢, V, 𝐵)
𝛾
𝑘

𝑘!
𝑡
𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼)
−𝜇

exp (𝑢𝛾√2𝐵 − V𝛾2𝐼)

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1, 𝜇 ̸= 0) ,

(76)

which for V = 1 gives bilateral generating matrix relations for
2V1PgGeMaP

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) and HMaP𝐻

𝑛
(𝑥, 𝐴).

Further, taking 𝛼 = 1 = 𝜇,𝑚 = 2, 𝑧 = 0 and using relation
(32c) in (74), we obtain
∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0

𝑈
𝑛−𝑝𝑘

(𝑥, 𝑦, 𝐴)𝐻
𝑘 (𝑢, V, 𝐵)

𝛾
𝑘

𝑘!
𝑡
𝑛−𝑝𝑘

= (𝐼 − 𝑥𝑡√2𝐴 + 𝑦𝑡
2
𝐼)
−1

exp (𝑢𝛾√2𝐵 − V𝛾2𝐼)

(|𝐵| <
1

√2

,
󵄨󵄨󵄨󵄨𝛾
󵄨󵄨󵄨󵄨 < 1) ,

(77)

which for𝑦 = V = 1 gives a known bilateral generatingmatrix
relations [13, p.32].
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Again set 𝑟 = 3 and Ω]+𝜂𝑘(𝑢, V, 𝑤) =
(𝑝,𝑞)

𝐶
(𝜌)

]+𝜂𝑘(𝑢, V, 𝑤; 𝛽,

𝐵) in Theorem 1, where
(𝑝,𝑞)

𝐶
(𝜌)

]+𝜂𝑘(𝑢, V, 𝑤; 𝛽, 𝐵) denotes the
3V1PgGeMaP defined by (30). Then we obtain the following
result which provides a class of bilinear generating matrix
relations for 3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴).

Corollary 10. Let

Λ ],𝜂 (𝑢, V, 𝑤; 𝛽, 𝜓) :=
∞

∑

𝑘=0

𝑎
𝑘
(𝑝,𝑞)

𝐶
(𝜌)

]+𝜂𝑘 (𝑢, V, 𝑤; 𝛽, 𝐵) 𝜓
𝑘 (78)

and for (𝑎
𝑘
̸= 0, ], 𝜂 ∈ N

0
),

Θn,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V, 𝑤, 𝛽; 𝜉)

:=

𝑛/𝑝

∑

𝑘=0

𝑎
𝑘
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

(𝑝,𝑞)
𝐶
(𝜌)

]+𝜂𝑘 (𝑢, V, 𝑤; 𝛽, 𝐵) 𝜓
𝑘
,

(79)

where 𝑛, 𝑝 ∈ N, and 𝐴 and 𝐵 is a matrix in C𝑁×𝑁 satisfying
the condition (1). Then we have

∞

∑

𝑛=0

Θ
𝑛,𝑝,],𝜂 (𝑥, 𝑦, 𝑧, 𝛼; 𝑢, V, 𝑤, 𝛽;

𝛾

𝑡𝑝
) 𝑡
𝑛

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

Λ ],𝜂 (𝑢, V, 𝑤, 𝛽; 𝛾) ,
(80)

provided that each member of (80) exists.

Remark 11. Using the generating matrix functions (31) for
3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) and taking 𝑎

𝑘
= 1 = 𝜂

and ] = 0 in the generating matrix relations (80), we get

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

(𝑝,𝑞)
𝐶
(𝜌)

𝑘
(𝑢, V, 𝑤; 𝛽, 𝐵) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

× (𝛽𝐼 − 𝑢𝛾√𝑝𝐵 + V𝛾𝑝𝐼 − 𝑤𝛾𝑞𝐼)
−𝜌

(𝜇, 𝜌 ̸= 0) .

(81)

Further, taking 𝑤 = 0 and using relation (32b) in the
previous equation, we find

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0
(𝑚,𝑠)

𝐶
(𝜇)

𝑛−𝑝𝑘
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

(𝑝)
𝐶
(𝜌)

𝑘
(𝑢, V; 𝛽, 𝐵) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝛼𝐼 − 𝑥𝑡√𝑚𝐴 + 𝑦𝑡
𝑚
𝐼 − 𝑧𝑡

𝑠
𝐼)
−𝜇

× (𝛽𝐼 − 𝑢𝛾√𝑝𝐵 + V𝑡𝑝𝐼)
−𝜌

(𝜇, 𝜌 ̸= 0) .

(82)

Also, taking 𝛼 = 1 = 𝜇, 𝑚 = 2, and 𝑤 = 𝑧 = 0 and using
relation ((32b), (32c)) in (81), we get

∞

∑

𝑛=0

𝑛/𝑝

∑

𝑘=0

𝑈
𝑛−𝑝𝑘

(𝑥, 𝑦, 𝐴)
(𝑝)
𝐶
(𝜌)

𝑘
(𝑢, V; 𝛽, 𝐵) 𝛾𝑘𝑡𝑛−𝑝𝑘

= (𝐼 − 𝑥𝑡√2𝐴 + 𝑦𝑡
2
𝐼)
−1

(𝛽𝐼 − 𝑢𝛾√𝑝𝐵 + V𝛾𝑝𝐼)
−𝜌

(|𝐴| <
1

√2

, |𝑡| < 1, 𝜌 ̸= 0) .

(83)

6. Concluding Remarks

Very recently, Dattoli et al. [14] introduced the 2-variable
generalized Legendre polynomials (2VgLeP) 𝑃

𝑛
(𝑥, 𝑦 \ 𝑚),

defined by the series

𝑃
𝑛
(𝑥, 𝑦 \ 𝑚)

=
1

√𝜋

[𝑛/𝑚]

∑

𝑘=0

Γ (𝑛 + 1/2 − (𝑚 − 1) 𝑘) (−𝑥)
𝑛−𝑚𝑘

(−𝑦)
𝑘

(𝑛 − 𝑚𝑘)!𝑘!
.

(84)

These polynomials are introduced by taking the action of
the following operator [14, p.84 (3.4)]:

Π̂
(𝑚)
(𝑥, 𝑦) :=

1

√𝜋
∫

∞

0

𝑒
−𝑡
𝑡
−1/2

(−𝑡)
𝑥𝐷
𝑥 exp(−𝑡𝑦 𝜕

𝑚

𝜕𝑥𝑚
)𝑑𝑡,

(85)

on 𝑥
𝑛
/𝑛! and then using the operational definition of 2-

variable Hermite-Kampé de Fériet polynomials (2VHKdFP)
𝐻
(𝑚)

𝑛
(𝑥, 𝑦) [15]

𝐻
(𝑚)

𝑛
(𝑥, 𝑦) = exp(𝑦 𝜕

𝑚

𝜕𝑥𝑚
) {𝑥}
𝑛 (86)

and the property

𝑟
𝑥𝐷
𝑥𝑓 (𝑥) = 𝑓 (𝑟𝑥) , (87)

of the dilation operator [15], so as to obtain

𝑃
𝑛
(𝑥, 𝑦 \ 𝑚) = Π̂

(𝑚)
(𝑥, 𝑦) {

𝑥
𝑛

𝑛!
}

=
1

𝑛!√𝜋
∫

∞

0

𝑒
−𝑡
𝑡
−1/2

𝐻
(𝑚)

𝑛
(−𝑥𝑡, −𝑦𝑡) 𝑑𝑡,

(88)

which yields definition (84).
In order to take the advantage of this technique, we

introduce the following operator Π̂
𝜇
(𝑥, 𝑦; 𝛼, 𝐴):

Π̂] (𝑥, 𝑦; 𝛼, 𝐴)

:=
1

Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1
(√2𝐴𝑡)

𝑥𝐷
𝑥 exp(−𝑡𝑦 𝜕

2

𝜕𝑥2
)𝑑𝑡.

(89)
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Now, operating Π̂](𝑥, 𝑦; 𝛼, 𝐴) on 𝑥
𝑛
/𝑛! and then making

use of (86), (87), (9), and (15), we obtain the following oper-
ational representation for the 2V1PGeMaP 𝐶(])

𝑛
(𝑥, 𝑦; 𝛼, 𝐴):

𝐶
(])
𝑛
(𝑥, 𝑦; 𝛼, 𝐴) = Π̂] (𝑥, 𝑦; 𝛼, 𝐴) {

𝑥
𝑛

𝑛!
} , (90)

which for 𝛼 = 𝑦 = 1 and in view of relation (19) yields
the following operational representation for the GeMaP
𝐶
(])
𝑛
(𝑥, 𝐴):

𝐶
(])
𝑛
(𝑥, 𝐴) = Π̂] (𝑥, 𝐴) {

𝑥
𝑛

𝑛!
} , (91)

where
Π̂] (𝑥, 𝐴) = Π̂] (𝑥, 1; 1, 𝐴)

=
1

Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1
(√2𝐴𝑡)

𝑥𝐷
𝑥 exp(−𝑡 𝜕

2

𝜕𝑥2
)𝑑𝑡.

(92)

Now, to find the operational representation for the
3V1PgGeMaP

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴), we introduce the fol-

lowing generalization of operator (89):

(𝑚,𝑠)
Π̂
𝜇
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴)

:=
1

Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1
(√𝑚𝐴𝑡)

𝑥𝐷
𝑥

× exp(−𝑡𝑦 𝜕
𝑚

𝜕𝑥𝑚
+ 𝑡𝑧

𝜕
𝑠

𝜕𝑥𝑠
)𝑑𝑡,

(93)

which on using (27), (87), and the operational rule of
3I3VHMaP𝐻(𝑚,𝑠)

𝑛
(𝑥, 𝑦, 𝑧, 𝐴) [8]

𝐻
(𝑚,𝑠)

𝑛
(𝑥, 𝑦, 𝑧, 𝐴)

= exp(𝑧(√𝑚𝐴)
−𝑠 𝜕
𝑠

𝜕𝑥𝑠
−𝑦(√𝑚𝐴)

−𝑚 𝜕
𝑚

𝜕𝑥𝑚
) {(𝑥√𝑚𝐴)

𝑛

}

(94)

gives

(𝑚,𝑠)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) =

(𝑚,𝑠)
Π̂
𝜇
(𝑥, 𝑦, 𝑧; 𝛼, 𝐴) {

𝑥
𝑛

𝑛!
} . (95)

Taking 𝑧 = 0 in (95) and using relations ((32a), (32b), and
(32c)), we find the following operational representation for
the 2V1PgGeMaP

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴):

(𝑚)
𝐶
(𝜇)

𝑛
(𝑥, 𝑦; 𝛼, 𝐴) =

(𝑚)
Π̂
𝜇
(𝑥, 𝑦; 𝛼, 𝐴) {

𝑥
𝑛

𝑛!
} , (96)

where

(𝑚)
Π̂
𝜇
(𝑥, 𝑦; 𝛼, 𝐴)

=
(𝑚,𝑠)

Π̂
𝜇
(𝑥, 𝑦, 0; 𝛼, 𝐴)

=
1

Γ (𝜇)
∫

∞

0

𝑒
−𝛼𝑡
𝑡
𝜇−1
(√𝑚𝐴𝑡)

𝑥𝐷
𝑥 exp(−𝑡𝑦 𝜕

𝑚

𝜕𝑥𝑚
)𝑑𝑡.

(97)

In particular, we note that

(2,𝑠)
Π̂
𝜇
(𝑥, 𝑦, 0; 𝛼, 𝐴) = Π̂

𝜇
(𝑥, 𝑦; 𝛼, 𝐴) . (98)

In this paper, several new matrix polynomials are intro-
duced using integral transform method allowing the deriva-
tion of a wealth of relations involving these polynomials.
These results allow us to note that the use of themethod of the
integral representation is a fairly important tool of analysis
and can be usefully extended to other families of polynomials
which is a problem for further research.
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[13] A. Altin and B. Çekim, “Generating matrix functions for
Chebyshev matrix polynomials of the second kind,” Hacettepe
Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 25–32,
2012.

[14] G. Dattoli, B. Germano, M. R. Martinelli, and P. E. Ricci,
“A novel theory of Legendre polynomials,” Mathematical and
Computer Modelling, vol. 54, no. 1-2, pp. 80–87, 2011.

[15] G. Dattoli, P. L. Ottaviani, A. Torre, and L. Vázquez, “Evolu-
tion operator equations: integration with algebraic and finite-
difference methods. Applications to physical problems in clas-
sical and quantummechanics and quantumfield theory,”Rivista
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