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81. Introduction

Let z be any complex number with |z| < 27. The Bernoulli numbers B,, and the Euler
numbers Es, (n=0,1,2,---) are defined by the following generated functions (See [1], [2] and

[3]):

z z T
= B,—, < = 1
e —1 7;) n! 1 2 (1)
and

1 el Z2n
= Es,, . 2
cos z Z 2 (2n)! @

n=0

For example, By = 1, B = —%, By = —}, By = —55, Bg = 75, Bs = —35, Bio = — &,
-++, Bypy1 =0 for n > 1, and

2’: 22k By, 1
= (2R)1(2r + 1 2k)!  (2r)!

holds for any integer r > 1 (See exercise 16 for chapter 12 of [4] ). Ey =1, E; =1, By =5,
Es = 61, Eg = 11385, Fyo = 150521, -- -, and

n

> (=1 (32) EBaa =0, n>1,

s=0
The Bernoulli numbers and the Euler numbers have extensive applications in combinational
mathematics and analytic number theory. So there are many scholars have investigated their
arithmetical properties. For example, G.Voronoi first proved a very useful congruence for
Bernoulli numbers, one of its Corollaries ( See [5] Proposition 15.2.3 and its Corollary ) is that

for any prime p = 3 (mod4) with p > 3, we have

o ()= ) o

j=1
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where (z/p) denotes the Legendre symbol and m = (p+ 1)/2. Liu Guodong [6] obtained some
identities involving the Bernoulli numbers. That is, for any integers n > 1 and k£ > 0,

"L (2n + 2 2% (2n +1)22" o,
(a) ]z: < 2 ) 2%k + 1)2]‘ B2j Qk‘-i- 2n+1 Z

"o 1\ 2 - 2% on +1 k
b By = 2s 4 1)%"
v JZO< 2j )(2k+2)27 47 g (f 4 1)2nt1 s:o( S+)

For the Euler numbers, Zhang Wenpeng [3] obtained an important congruence, i.e.,

5 0 (mod p), p=1 (mod 4),
_1 =
: —2 (mod p), p =3 (mod 4).
where p be a prime.
Liu Guodong [7] proved that for any positive integers n and k,

Eo = (-1 "+k22"+1z )'i?" (mod (2k + 1)2).

Other results involving the Bernoulli numbers and the Euler numbers can also be found in [§],
[9] and [10]. This paper as a note of [6] and [7], we use the elementary method to obtain some
other identities for the Bernoulli numbers and the Euler numbers. That is, we shall prove the
following;:
Theorem 1. For any positive integers n and k, we have the identity
"\ (20 42 oy Ba  An+1) o _—
;( 9% ) (2-2%) (2k)2t = (2k)2n+2 m:1(2m_ 12,

Theorem 2. For any positive integers n and k, we have

n k—1
3 () <2 S e

t=0 =0
From Theorem 2 we may immediately deduce the following;:
Corollary 1. For any odd prime p, we have the congruence

(—1)"% 2 (modp), p =3 (mod 4);
b2

E 2_ 1 = 2
O (1) 2 L1, yoxa) (modp), p=1 (mod 4),

where y2 denotes the Legendre symbol modulo p, x4 denotes the non-principal character
mod 4, and L(1, x2x4) denotes the Dirichlet L-function corresponding to character y2x4 mod 4p.

This Corollary is interesting, because it shows us some relations between the Euler numbers
and the Dirichlet L-function. From Corollary 1 we can also get the following;:

Corollary 2. For any prime p with p = 3 (mod4), we have the congruence

2) 2 (modp), if p =7 (mod 8);

Ba =2
e p —2 (mod p), if p=3 (mod 8).
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82. Some Lemmas

To complete the proof of Theorems, we need the following three simple lemmas. First we
have

Lemma 1. For any integer n > 1, we have have the identities

" 1 —cos2nzx
A 2 sin(2m — 1)r = ————;
(A) Z sin(2m — 1)z o

1 —(=1)"cos2nx
cos T '

(B) 2 Z ™ cos(2m + 1)z =

Proof. In fact7 this Lemma is the different forms of the exercise 3.2.9 of [11], where is

n . 2
Z sin(2m — 1)z sin nx
- sinx sinx

Note that 2sin? nz = 1 — cos 2nz, from the above we can deduce the formula (A) of Lemma 1.
If we substitute « by /2 — y in (A), we may immediately get formula (B).

Lemma 2. For any real number = with 0 < |z| < m, we have the identity

1 — = _1\n __92n B2TL 2n—1
sin:r_z( D" (2-2 )(Qn)!x ’

n=0

Proof. (See reference [12]).

Lemma 3. Let p be an odd prime, x be an even primitive character mod p. Then we

have
G~
> x(m) == ) L1 %),
n<p/4
p—1
2mwin

where G(x) = Z x(n) e 7 is the Gauss sums, x4 denotes the non-principal character mod4,

n=1

and L(1,%xx4) denotes the Dirichlet L-function corresponding to character Xxs mod 4p.
Proof. (See Theorem 3.7 of [13]).

83. Proof of the theorems

In this section, we shall complete the proof of Theorems. First we prove Theorem 1. Note
that

&S] [e9)
x2n+1 2n

sinx = Z(—l)”m and cosx = Z(—l)” (:;n)!’

n=0
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from Lemma 2 and (A) of Lemma 1 we have

 — s (2m — 1)2s+1 2s5+1
2 —1)
;g( ST ®
- B _ - (2n)%s
_ _1)\s __92s 2s  2s—1 _ _1)\s 2s
= (z_jo( 1)°(2-2 )—(25)!:13 ) (1 s:o( 1) " )
e Bosg 3 e (2n)2s+2
— —1)5 (2 — 225 2s5—1 —1)8 2542
(g( ' ) Gop® ) (z_:o( S asra®
s s B (2n)2572t+2
_ _1)s o2t 2t 2s+1
= g( 1 (tz_; @) oz ) © 3)
Comparing the coefficient of 22+ on both side of (3), we get
n k _
5 Z (Qm 2k+1 Z 2 B 22t B2t (2n)2k 242

(2k + 1 ) (2k — 2t + 2)!

m=1

or
n

Mok 42 oty Bat 4(k+1) 2%+1
Z( 2t ) (2-2%) (2n)2 — (2n)2F+2 (2m — 1)

m=1

This proves Theorem 1.

Now we prove Theorem 2. From (2) and (B) of Lemma 1 we have

DRI pEIN =TI
m=0 s=0 !
= iE2 :1;’_25 1— (_l)n i(_l)s (2n)25x2s
=0 s (25)' s=0 (25)'
oo 28 . o s Eo o o) 252t 0s
i SZOE% A z::o; Gt ((25)—2t)!x ' (4)

Comparing the coefficient of 22* on both side of (4), we may immediately deduce

k

n—1 . (2m+1)2k _ Es bt Eoy (2n)2k—2t
sz::o(_l) h 2k (2k§! _g(_l) " (2t)! (2k — 2t)!

or
k
2k\ E
2 m+k 2 E _ 2 2k 7’L+k t 2t )
Z m o+ 1) 2k n) tz:; 2t ) (2n)2

This completes the proof of Theorem 2.
To prove Corollary 1, taking k = p and n = (p? — 1)/8 in Theorem 2 we may get

on\ E =

n t 2t m+n

2Fs5,, + 2p E < ) o7 =2 E (2m + 1)
=0

or
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B = (15 3 (— 1) (2m + 1) (modp). (5)
m=0

For any integer a with (a,p) = 1, from the Euler’s criterion (See Theorem 9.2 of [4]) we know

that
p—1 a
a? =|(- modp),
(5) toan

where (a/p) = x2(a) is the Legendre symbol modulo p.
By this formula we may get

+1

p2o1 <a>% ] 1 (modp), ifp=3 (mod 4);

P (%) (mod p), ifp=1 (mod 4).

If p =3 (mod4), note that (%) =0, from (5) and (6) we can get

p—1

Bpa = ((1)5 Y (-)memt )
m=0
= (- ’%pil_ m(2mtl : mo
- (1) mX_:O(l)< : )( dp)

= (—1)#2 (modp).

p—1
_ m
If p =1 ( mod 4), note that (71> =1 (an even character mod p), G(x2) = /p and E <;> =
m=1
0, from (5), (6) and Lemma 3 we may obtain

p—1

Ep, = (_1)% Z(_1)m(2m+1)#
m=0
Bk i (2m] -
= (-1) mz::o(l) < 5 )( dp)
e | P& a1 i 2md
= (=1) zmzo< 5 )—m_0< ’ ) (modp)
(-1)/2
= (1S 2E2) (mo
= (-1 2mzo<p>( dp)
., 1/
= ()5 2 > <;> (modp)
., 1/
= (-DF 4 ) <—> (modp)
= (—I)PZS__luL(LXzXU (modp),
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where @ denotes the solution of the congruence ax =1 (modp) and 4 = %.
This completes the proof of Corollary 1.
Note. Using the exercise 3.2.7 and 3.2.8 of [11], we can also deduce the other identities

and congruences involving the Bernoulli numbers and the Euler numbers.
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