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We present some summation formulae for some special values of ratios of 
generalized p-adic hypergeometric functions in terms of the p-adic gamma function. 
By well-known methods such formulae yield expressions for roots of congruence 
zeta-functions in terms of Jacobi sums in the nonsingular case. We also express 
various formal-group congruences, including those involving Apery numbers, in 
terms of p-adic hypergeometric functions at singular and nonsingular points of the 
associated differential equation. These congruences yield p-adic analytic formulae 
for unit roots of certain Hecke polynomials. Q 1992 Academic FWS, Inc. 

1. INTRODUCTION 

In this article we present some explicit formulae for values at x = 1 and 
at x = - 1 of p-adic analytic continuations of ratios of generalized hyper- 
geometric functions. For certain cases of 3F2 and *F, functions we evaluate 
the continuation in terms of the p-adic gamma function, in forms which 
yield products of Jacobi sums (via the Gross-Koblitz formula). We also 
express certain formal-group congruences satisfied by ApQy numbers 
(cf. [19, 17,2]) and by binomial coeffkients (cf. [4]) in terms of p-adic 
hypergeometric functions. 

The p-adic analogue of Gauss’ evaluation of 2F,(a, /?; y ; 1) has been 
treated by N. Koblitz [13] and J. Diamond [S]. In Section 3 we obtain 
similar p-adic analogues of the classical theorems of Kummer, Saalschiitz, 
Dixon, and Watson via various combinatorial identities and the basic 
properties of the p-adic gamma function. While we do not give a complete 
answer to the question, “When may the ratio F(x)/F(xp) be prolonged to 
x = 1 or x = - 1 ?“, we do give formulae for the value of the continuation 
in many cases where the value is a p-adic unit which is expressible in terms 
of Jacobi sums over the prime field IF,. 
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The requirement that one should obtain Jacobi sums over ff,, amounts 
essentially to a restriction of the hypergeometric parameters to be rational 
numbers in (0, 1 ] with denominator dividing p - 1. This restriction has the 
advantage of simplifying certain considerations in the p-adic theory of 
hypergeometric functions. When the parameters do not lie in (l/( p - 1)) Z 
the condition necessary for a unit-valued continuation becomes more 
involved (cf. e.g., Eq. (3.2) below for the case of zF,( 1) with 7 = 1; also 
hypothesis (ii) of Theorem 2.3), just as the condition for Jacobi sums over 
F,, (r > 1) to be p-adic units is more involved than for those over IF,,. 
However, in some cases the results in Section 3 hold in greater generality 
than the stated hypotheses. 

Restricting our attention to F, also facilitates an interpretation of our 
results in the language of formal group laws. Corollary 2.2 below is essen- 
tially an expression of congruences of the Atkin-Swinnerton-Dyer type for 
binomial coefficients in terms of Jacobi sums. One may likewise view 
Theorems 3.1 and 3.2 below as expressions of formal-group congruences for 
products of binomial coefficients in terms of p-adic hypergeometric 
functions. In Theorem 4.1 we show how the formal-group congruences 
associated to Apery numbers may also be viewed in this manner, and use 
this interpretation to express the p-adic unit roots of certain Hecke polyno- 
mials in terms of p-adic hypergeometric functions (Corollary 4.2). 

The author thanks A. Adolphson for many helpful conversations, and 
the referee for useful comments and suggestions. 

2. NOTATIONS AND PRELIMINARIES 

Throughout this paper p will denote an odd prime, ff, the finite field of 
p elements, Z, the ring of p-adic integers, QP the field of p-adic numbers, 
CP the completion of an algebraic closure of Q,, and 0 the ring of integers 
of C,. We let rr E Q be a fixed solution to rcpP ’ = -p and let c be the 
unique pth root of unity in D such that i = 1 + rc (mod ~‘0). 

The p-adic gamma function r, is defined by setting r,(O) = 1, and for 
positive integers n by 

f,(n)=(-1)” n j. (2.1) 
O<j<tl 

P li 

If x,y~H+ and x=y (modp’E) then f,(x)rT,(y) (modp’Z); therefore 
the function has a unique extension to a continuous function r,: Z, -+ Z; , 
which is Lipschitz with constant 1 [20, Corollary 3.31. There are functional 
equations of translation and reflection for r,,: 
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(2.2) 

T,(x) I,,( 1 -x) = (- l).C, XEHp, (2.3) 

where ZZ is defined by the conditions 1 E ( 1,2, . . . . p) and .i = x (mod pP,). 
In addition r, satisfies the Gauss multiplication formula 

for all x E B, and n E H + with p j 12 (cf. [4]), it being understood that the 
last factor is obtained from the binomial expansion when the exponent is 
not an integer. 

The relation of the p-adic gamma function to Gauss sums and Jacobi 
sums is as follows. If II/: IF, + Q,(c) is a fixed nontrivial additive character 
and x: [F; -+ QP is a multiplicative character (extended to IF, by defining 
x(O) = 0), the Gauss sum g(x) E O,(l) is defined by 

&9= - 1 $(f) x(t). (2.5) 
IElF,, 

For the remainder of this paper we fix the additive character t,Q on [F, 
defined by e(i) = [’ for all t E Z. The Teichmiiller character o on IF, is the 
unique multiplicative character satisfying ~(0 = t (mod pit,) for all r E Z. 
The Gross-Koblitz formula [lo] for Gauss sums states that for 
O<a<p- 1 we have 

g(cPy = 7cTp z ( > p-l 
If x1, xZ: F; -+ QP are multiplicative characters (again extended to [F, by 

xi(O) = 0), the Jacobi sum J(xi, xZ) E Q, is defined by 

4x19 x2) = - c x,(t) x2(1 - r). (2.7) 
f t Fp 

We have the well-known relation 

J(x x )JdXMX2) 
19 2 

&IX2) 
(2.8) 

between the Gauss sums and Jacobi sums (cf. [4]). From the 
Gross-Koblitz formula we conclude that for a, b < a + b <p - 1, 

J(u-“, UP)= (2.9) 
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It follows that to obtain Jacobi sums over [F,, we may take our arguments 
in rP to be rational numbers in (0, 1) with denominators dividing p - 1. 

We now give an elementary proposition expressing certain ratios of 
binomial coefficients in terms of r,,, which will be useful in the sequel. 

PROPOSITION 2.1. Suppose 0 < a < b < p - 1, and for r > 0 set 
n,=b(p’- l)/(p- l), m,=a(p’- l)/(p- 1). Then for r>O, 

r= - rpc1 + n,) 
&(l +m,)r,(l +n,--,)= 

rpc -4) rpbb - n,) 

r,c-n,j . 

Proof: From the definition one computes 

n 1 
-r,(l+n,)=(-l)“fpp”‘-‘--‘-1?, 

n r-- 1. 

and similarly for 1 +m, and 1 + n, -m,, from which the first equality 
follows. The second equality is then obtained from the reflection formula 

for rP, by noting that (G,) + (m>,) - ( Gr) = (p - a) + (p + a - b) - 
(p-b)=p, and (-l)“= -1. 

Note that by induction, this proposition implies that for each r > 0, the 
binomial coefficient (z) is a p-adic unit. Using the Gross-Koblitz formula 
and the fact that r, is Lipschitz with constant 1, we also obtain the 
following corollary (cf. [ZO, Eq. (35); 4, Eq. (29)]): 

COROLLARY 2.2. With notation as in Proposition 2.1, for each r > 0 we 
have 

In order to discuss the p-adic theory of hypergeometric functions, we 
first define a map a ~-+a’ on Q A B, by requiring that pa’- a = 
P,E (0, 1, 2, . . . . p-l} (see [6, 73). Note that p,+ti=p. We write a”‘=a, 
and a”‘- -a”-“’ for i> 0; we also will write pt) for ~~(0. It is easy to verify 
that this map is well-defined and continuous, that a”’ = 0 for some i if and 
only if Q is zero or a negative integer, and that a’ = a if and only if a is a 
rational number in [0, l] with denominator dividing p - 1. We also note 
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for future reference that if 0 < a <p - 1 and m, = a(p’ - l)/(p - l), then 
(-m,)‘= -m,-, and (1 +m,)‘= 1 +m,_,. 

The generalized hypergeometric function kFk _ ,(a1, . . . . @k ; yI , . . . . yk ~ I ; x) 
is defined for (complex or p-adic) parameters Cli, yj by the series 

F 
al, . . . . ak 

k k-l (2.10) 
Yl, ...? Yk-l 

for all values of x for which it converges. We require that no yj be zero or 
a negative integer, since in that case the series is undefined. In the case 
where some ai is zero or a negative integer, the series defines a polynomial. 
If the. parameters satisfy 

1 +al=yl+a2= “’ =ykpl+ak, (2.11) 

the series is said to be well-poised, and if 

al + “’ +ak=yl + ..’ +yk-I-l, (2.12) 

the series is said to be Saalschiitzian. 
The function (2.10) satisfies the linear algebraic differential equation 

( 

k-l 
E n (E-yj+ 1)-x fi (E+ai) y=O, (2.13) 

j=l ,=I > 

[ 1, p. 1841 where E = x (d/dx); this equation is of the Fuchsian type with 
regular singularities at x = 0, 1, and co. Our formulae (Sections 3,4) for the 
values at x = 1 may thus be viewed as being associated to the singular 
fibres of families of varieties. 

In [6,7], B. Dwork has shown that for general ai, yj E Q n Z,, a certain 
ratio of the hypergeometric functions (2.10) can be extended as an analytic 
element (i.e., uniform limit of rational functions) to a domain larger than 
the disk of convergence (1x1 < 1) of the series. The particular statement of 
this result we will use is as follows: 

THEOREM 2.3 (Dwork). Suppose that a,, . . . . ak, y,, . . . . yk- 1 E Q n H,, 

that none of the yj are zero or negative integers, that yj # 1 for 1 <j < q and 
yj= 1 for q<j<k- 1. For z’>O set 

F(‘)(X) = f A(‘)(n) X” = kFk- 1 EQp[xJ, 
n=O 

and for i, s 30 set F:‘(X) = ~~~ol A”‘(n) X”. Suppose further that the 
parameters satisfy the conditions 

(i) lyj”I = 1 for all ia0, j= 1, . . . . k- 1. 
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or (,,>ii) F each fixed i 2 0, supposing the indices are rearranged so that 

l-b: ’ . . . < ptk) and $’ < . . </A!“, we have p!” > ,uLj)i, ,for ,j = 1, . . . . y. ,‘q i’i 
Then 

(i) For all i>O we haue FCi’(X)~Zp[XJ, and,for r>s>,O, 

F;O,! ,(A-) F:“(Xp) = F;“(XP) F:.“: ,(A’) modp”+‘Z,[X]. 

(ii) Ifa= (xEC~: IF:“(x)/ = 1 for all i>O}, then F’oJ(.x)/F”‘(xy) is 
the restriction to 1x1 -C 1 of an analvtic element f of support 3, given by 

uniformly for x E 3. 

f(x) = )i~: Fj’$(x)/F;“(xP) 

Proof: When none of the xj are zero or negative integers, the result 
is given by Dwork in [6, Theorem 2, Theorem 3; 7, Lemma 2.2, 
Theorem 3.11; the hypothesis (ii) above is a restatement of hypothesis (vi) 
of [7, p. 3031 in the special case /I = 0. But if any 01~ is zero or a negative 
integer, then (ii) is trivial and (i) may be obtained by approximating the 
aj which are non-positive integers by suitable p-adic numbers which are not 
non-positive integers, and using a continuity argument. 

As in [ 13, 51, we also remark that, since the functions F!“‘(X) are 
rational functions of the CC(~), yjm), if x0 lies in the domain a of support for 
the prolongment of the ratio associated to kFk _ 1 (aI, . . . . ak ; y, , . . . . yk _ 1 ; x) 
for all (M,, yi) lying in some subset S of (Q n Z,)*“ ~ ‘, then because of the 
uniformity of the limit in (ii) above, f(xO) is a continuous function of the 
parameters (q, y,) on the set S. 

In the remainder of this article we will use the symbol 

(2.14) 

to denote the analytic element f of support 3 which extends the ratio 

F 
a,, . . . . tlk 

k k-l ;x 
YI> . . .T Yk- I > 

(7 151 
a;, ..,, ci; 

> 

\-*--I 
F k k-1 

r; , ..., y; - 1 
;xp . 

3. JACOBI SUMS AND p-ADIC HYPERGEOMETRIC FUNCTIONS 

In [13], Koblitz has proven that 

(3.1) 
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when c(, /I E E, satisfy the conditions 

a, +b,cp for i>O, (3.2) 

where --a=a,+a,p+a,p’+ ..‘, -/?=bo+b,p+b2p2+ .-.are the 
p-adic expansions of -CI, -/I, and that there is a unit-valued continuation 
to x = 1 (i.e., 1 E CD) if and only if (3.2) holds. For a, h < a + b <p - 1, this 
yields the Jacobi sum (over ‘FP) 

(3.3) 

Koblitz’ method is to begin with the Vandermonde convolution formula 

(m;n)=mi;gy;)(;)=2F,(-m;-n;l) (3.4) 

for appropriate m, n E Z +, and take ratios and p-adic limits. This basic 
method is also applicable in other situations. We begin by proving a p-adic 
analogue of Kummer’s theorem [ 151, which gives the value at x = - 1 of 
a well-poised 2F, series. This classical formula demonstrates that a well- 
poised 2F1( - 1) may be expressed in terms of gamma functions even 
though x = - 1 is not a singular point of the differential equation (2.13) 
satisfied by the ZF,. Since x = - 1 is indeed an ordinary point, the present 
theorem relates to the cohomology of curves. 

THEOREM 3.1. SupposeO<2a<b<p-1 and2(b-a)<p-1. Then 

5 2 1 

Proof: If na2ma0, then 

(2i-k) (n-2km+k)=(2L) (2km) 

[ 14, p. 31. Substituting this in the combinatorial identity 

=k&-l)k(;) (2:-k) 

(3.5) 

(3.6) 
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[14, p. 143, yields 

which we rewrite as 
n 

0 (-l)-+= 
2F1 ( 

-2w-n 

( ) 

1 +n--2rn; 
-1 

> 
2m 

(3.7) 

(3.8) 

For r>O let n=n,=b(p’- I)/(p- l), m=m,=a(p’- l)/(p- 1); then 
n, > 2m,. From Proposition 2.1 we see that (z,), ( ;A,) E Z: ; therefore from 
(3.5) and (3.7) we find that 

( 
-2w, -n,. 

2F1 1 +n,-2m,’ x EZpCXI 
i 

(3.9) 

and (3.8) implies that the value at x = - 1 is a p-adic unit, for each 
rb0. Now as r+co, -2m,-+a=2a/(p- l), -n,-+fl=b/(p- l), and 
1 +n,-2m,+y=c/(p- 1) (p-adically), where c=p- 1 +2a-6. Note 
that a(“=a, b”)=fi, yCi)=y, and py)= 2a, pF)= 6, pi:)= c for all i>O. 
Since b <p - 1, pi,‘) = c > 2a = p!‘; and since 2(b - a) < p - 1, we have 
,uF) =p - 1 + 2(a - b) + b > b = p:‘. Therefore p:’ > py’, ,uF’, so the condi- 
tions of Theorem 2.3 are satisfied for F(X) = ,Fl(a, /? ; y ; X), and the ratio 
F(X)/F(XP) extends to the region ?! where each IF\“(x)l = 1. 

By taking F(X)=?F,(-2mr, --n,; l+n,-2m,;X) and s=O in 
Theorem 2.3 (i), we find that, since each I&““( - 1)1 = 1 and FCi)= Fy), we 
have IF\“( - l)[ = 1 for all i, r > 0; because of the continuous dependence 
of the polynomial Fi” on its parameters, this is also true for 
F(X) = 2Fl(a, /?; y; X). Therefore the ratio can be prolonged to the value 
.Y = - 1, and the value is given by 

PI ( 
-2m,, -4, 

2g, (ai’; -1)= lim 
1 +n,-mm,’ 

-1 
> 

r + 35 

( 

-2m,-,, -n,-, 

2F1 l+n,+,-rn,-, 
; ( - 1 JP] 
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=(-1)” 
J(WP, coa- “) 

J(O-2a, co2y 

=(-1)” 
G(jif+p~q) 

G($+G(~)’ 

(3.10) 

as asserted, using (3.8), Corollary 2.2, and the Gross-Koblitz formula (2.6). 

A cohomological interpretation of this result can be seen as follows: One 
has the classical Euler integral formula 

F(a) T(Y -a) 
r(y) 2F~(“~;i.)=~~~~.“.’ (Rey>Rea>O) (3.11) 

[9, p. 1751 expressing 2F,(/l, a; y; 2) as a period of the differential form 

0 P.~~y=Xr*~~(l-X)Y--n--(l-E.x)-~dx, (3.12) 

and giving a relation of the ,F, to the cohomology associated with the 
algebraic function 

y=y’ (1 -X)B-‘-l (1 -Ax)-8 (3.13) 

when a, /?, y E Q. (In 193, f= (1 -x) y is the function being studied.) When 
I= -1 and 1 +cc=y+fl, Eq. (3.13) becomes 

y=x”-yl -x2)-B, (3.14) 

and therefore one has an automorphism (x, y) H (-x, (- l)“- ‘y), which 
induces an action on cohomology, under which 

~P.a,y i-b (- 1)” @g,ir,y- (3.15) 

For a E Q this gives a representation of a group of roots of unity into the 
automorphism group of the two-dimensional cohomology, of which (3.15) 
is an isotypical component. The map (x, y) H (-x, ( - l)a-l y) commutes 
with the Frobenius map (x, y) H (xP, yp) precisely when a E (2/(p - 1)) Z; 
in this case Frobenius is stable on the subspace of cohomology generated 
bY ~B,a.Y~ and Theorem 3.1 may be viewed as arising from the isolation of 
this subspace. One may also note that the change of variable x2 = t in 
(3.14) reduces the integral in (3.11) to a beta function, giving a derivation 
of the classical Kummer formula from the Euler formula. 

A second p-adic analogue which is similarly obtainable from a com- 
binatorial identity is that of Saalschiitz’ theorem [15], which gives the 
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value at x = 1 of a Saalschtitzian 3F2 series. This and the remaining results 
of this section deal with the values of 3F, functions at the singular point 
.x= 1 of Eq. (2.13). In addition to those described in [13], one also finds 
examples in of the number-theoretic use of such singular values of hyper- 
geometric functions in parts (ii), (v) of Theorem 4.1 and Corollary 4.2 
below. 

THEOREM 3.2. Suppose O<a,b,c,d,e<p-1, with a+b+c=d+e- 
(p - 1). Then 

Proof: Suppose that s, m, n, q E Z + satisfy s + q < n and m G n 6 m + q. 
Then we have the identity 

(~)(t)=~~(:,‘g)(m+y-n)(n~~~m)~ (3.16) 

where A4 = min(s, m + q -n) [ 14, p. 16, Eq. (12)]. Since 

(:=3=(s:,) ,.iYl”,,i 

(“:f”)=(-l)J(“‘:“) (.iJYLh 

we may rewrite this as 

= 3Fz n+l, -s,n-m-q 

n+l-s-q,n+l-m 
(3.17) 

Now if a, b, c, d, e satisfy the conditions of the theorem, then for each r > 0, 
the integers s = s, = a(p’- l)/(p- l), m = m, = (d-b)(p’- l)/(p- l), 
n=n,=(p-l-b)(p’-l)/(p-l), q=qr=(p-l+c-d)(p’-l)/(p-1) 
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satisfy the hypotheses of the above combinatorial identity. By Proposi- 
tion 2.1, 

(3.18) 

which as before implies that 

F 
( 

*,+ 1, -s,,n,-mm,-qq, 
3 2 n,+l--s,--q,,n,+l-m, 

;x •~J~l 
> 

(3.19) 

and its value at x = 1 is a p-adic unit, for each Y 3 0. As r + co, the values 
of these parameters approach the limits b/(p - 1 ), a/(p - 1 ), c/(p - I), 
e/(p - 1 ), and d/(p - 1 ), respectively. Our hypotheses imply that 
a, b, c < d, e, so condition (ii) of Theorem 2.3 is satisfied. We may now 
complete the proof using (3.17) and a continuity argument as in 
Theorem 3.1, expressing the ratios of binomial coefficients in terms of r, 
via Corollary 2.2 and the Gross-Koblitz formula. 

We next give a p-adic analogue of Dixon’s theorem [ 151, which gives the 
value at x = 1 of a well-poised 3F2 series. 

THEOREM 3.3. Suppose 0<2a<bdc<p- 1, with b+c-a<p- 1. 
Then 

Proof A terminating form of the classical Dixon’s theorem 
[ 15, Eq. (111.9)] states that for n E Z+, we have 
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Being a finite summation theorem, this result is valid for p-adic parameters 
as well. For r 20 we set n =n,= c(p’- l)/(p - l), and under our 
hypotheses on a, b, c we compute for r > 0, 

(l+j3)n, 
(l I ,“l)~,~,=~-~~~~~‘~~~(p2~pl) 

rp l+n,+- 
i ) 

(3.21a) q1 I ;:,I ; 

(l +A, - 
(1 1 p~l)~,~,=(-l)~~~~~~~(~l) 

rp l+n,+z 
( > 

(3.21b) q1 f Y; ; 

(l+F)., ( ‘,“--P). (321~) 
l-, l+n,+- 

(1 I ;Jm,=(-lJn’pnr-’ rp(l+kJ ’ . 

(Ifs)& 
0 +3.,.-, 

= ( 
rp 1 +n,+- 

( 

a-b 

P-l ! (3.21d) 

which again shows that each IFf’( l)/ = 1, with F as in (3.20), for all n = n, 
with i, r 2 0. Since n, + - c/(p - 1) as r -+ cc, the same is true for the 3F, 
in the statement of the theorem. Condition (ii) of Theorem 2,3 is satisfied 
when b+c-2a<p--1; however, we need b+c-adp-1 in order for 
(3.21d) to hold, ensuring that 1 E Ti. Therefore under our assumptions there 
is a continuation of the associated ratio to the value x = 1. Letting r --+ 0~1, 
we obtain the value 

5 3 2 

(3.22) 
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By applying the translation formula to the first term in the numerator and 
denominator, and the reflection formula to the remaining terms, one 
obtains the statement of the theorem. 

We remark that in the special case where 2a = b = c, this result may be 
obtained from the combinatorial identity 

k&l)k(2;)‘=3F2( -2m’ ;,‘I”’ -2m; 1) (3.23) 

[ 14, p. 421, in a manner similar to that of the previous two theorems, and 
in this case yields the formal-group congruence 

for 0 < a Q (p - 1)/3, where m, = a(p’ - l)/(p - 1). 
We conclude these results with a p-adic version of Watson’s theorem 

[ 151, which gives a result for a special class of J*(l) which are neither 
well-poised nor Saalschiitzian. 

THEOREM 3.4. Suppose 2a < 2b < 2a + 2b <p - 1, and 2a < 2c ,< p - 1. 
Then 

2a 2b c 

ProojI For r>O we set n,=a(pr-l)/(p-1) and m,=1/2+d(p’-l)/ 
(p - 1 ), where 26 + 2d =p - 1; we also set y = c/(p - 1). The classical 
Watson’s theorem [ 15, Eq. (III.23)] in a terminating form yields 

F 
-24, 2m,, y r(t) r(; + 7) r(+ + m, - n,) r($ + y + n, - m,) 

3 2 f+in,--n,, 2y’ ’ = > r(~-n,)T(f+m,)r(~+y+n,)r(l+y-m,)’ 

(3.25) 
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Under our hypotheses on a, b, c, we compute, for r > 0, 

(3.26b) 

(3.26~) 

f(~+y+n,-m,)/f(~+y-m,) &($t-Y +n,-mm,). 
f(~+Y+n,~,-m,-,)/f(~+Y-m,~,) 

= ( - 1 )“’ p”‘- I 
f,(;+y-m,) ’ 

(3.26d) 

which as before shows that each IFj”(l)l = 1 for the 3Fz associated to the 
statement of the theorem. Since the hypotheses of Theorem 2.3 are satisfied 
under our conditions on a, b, c the stated value may be obtained precisely 
as in the previous theorems. 

Remark. One may observe many relationships between these formulae. 
For example, by comparing Koblitz’ result with Theorem 3.2, one finds 
that if a, b, c>O and a+b+c=p- 1, then 

which follows essentially from the relationship between the two com- 
binatorial identities, but otherwise seems to have no analogue in classical 
analysis. A comparison between Theorems 3.2 and 3.4 yields the more 
unusual result that ifa+b+(p-1)/2=d<p-1, then 

a b 1 ~ - - 
p-l’p-1’2 

i i 

d ; 1 =a2 

-1 
p-l’ 

2a 2b 
p-l’p-1’ 

i- 

d 
p-l’l 

1 
5 

(3.28) 

EXAMPLES. The relation between the analytic.continuation of ratios of 
p-adic hypergeometric functions and congruence zeta-functions of varieties 
has been explained by Dwork [6, Sect. 61. The prototypical example is 
that of the the Gauss hypergeometric function IF,($, 4; 1; A), which is 
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the holomorphic solution at 1=0 to the Fuchs-Picard equation for the 
Legendre family of elliptic curves with afline equation 

E,:y2=x(x- 1)(x-1) (A # 0, 1). (3.29) 

If Ip = A and E, has non-supersingular reduction at p then the reciprocal 
unit root CC(A) of the zeta-function of the reduced curve is given by 

@)=(-I)‘“-“!’ 25, (‘;+:A) (3.30) 

[6, Eq. (6.29)]. From Theorem 3.1 we find that for p = 1 (mod 4), 

X(-l)=*%, *;2; -1 =(-1) r > (p- 1)/4 r,m2 - 
r,(t) 

= (_ l)‘P- 1)/4J(Jl -p)/4, J’ -PY4) (3.31) 

In this case it is easy to check directly using character sums that the elliptic 
curve y* = x3 -x has non-supersingular reduction precisely when p s 1 
(mod 4) and in that case (3.31) does indeed give the reciprocal unit root of 
the zeta-function. Thus a unit-valued continuation for 2F,(& i; 1; 1) to 
I = - 1 exists only under the hypothesis p = 1 (mod 4) implied in 
Theorem 3.1. In this example the action on cohomology (cf. Eq. (3.15)) is 
induced by the complex multiplication (x, y) H (-x, fiy) on Em, by 
the fourth roots of unity. 

The results in this section do in some cases hold under hypotheses 
weaker than those stated here. We consider the 3F2 functions which arise 
from the family of K3 surfaces with projective equation 

x;l + A-: + xi + A-; - 4u,x2x,x4 = 0 (3.32) 

studied in [6. Sect. 6(j)]. A solution to the corresponding differential 
equation for this family at 2 = 0 is given by 

and at CC a solution is given by 

A-13F2 (ii;‘: i-4). 

(3.33) 

(3.34) 

In that paper Dwork analyzed the solution at CC and determined that the 
reciprocal unit root ~(2) of the nontrivial factor of the zeta-function of the 
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reduced equation is given for A lying in the region 3 associated to (3.34) 
and A4 # 1 by 

(the constant factor was determined [6, p. 761 to be 1). From Theorem 3.4 
we find that the fourth roots of 1 also lie in a for p = 1 (mod 8) and in 
this case the values corresponding to the singular libres at i4 = 1 are given 
by 

@bJ) = 352 
‘P@’ ‘P@’ = ~(~‘1 -/Q/8, w(3-W8)2 

q4,’ 
(3 36) . . 

Of course one may also use the solution at ;1. = 0 and Dwork’s methods 
in [6, 71 to conclude that for I lying in the region Z? associated to (3.33) 
and A4 # 1, 

(3.37) 

where the constant E may be determined via specialization of the family to 
the diagonal surface at i = 0. For p - 1 (mod 4) we may use the tuple 
U= (1, 1, 1, 1) in 16, Eqs. (6.36), (6.37)] to obtain 

E=p-lg(w (1 -N/4)4 = -r,(L)” (3.38) 

(the factor of p had been suppressed in Dwork’s equations as extraneous). 
From Theorem 3.4 we find that for p = 1 (mod 8), 

(3.39) 

Therefore for p = 1 (mod 8) and A4 = 1 the singular values are also given by 

(The agreement between these two expressions for the singular values of 
the CC(~) may be demonstrated by means of the Gauss multiplication 
formula with x = l/4, n = 2, and the reflection formula.) 

In this example all the ~(2) for L E a are squares, due to the formula 

2a,a+b,2b 
-~)=A(~+Ubh+~;x) a+b+&2a+2b’ 

(3.41) 
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of Clausen [l, p. 1851. Applied to (3.33), (3.34), this yields 

(3.42) 

(3.43) 

From Koblitz’ criterion (Eq. (3.2) above) one verifies that the analytic 
element associated to the right side of (3.43) has a unit-valued continuation 
to x = 1 (i.e., 1 E a) if and only if p = 1, 3 (mod 8). Therefore by (3.1), 
(3.43); and the uniqueness of p-adic prolongments the relation 

(3.44) 

from (3.36) holds also when p z 3 (mod 8), although this is not covered by 
Theorem 3.4. (Using the full statement of the Gross-Koblitz formula [lo] 
one finds that the product of rp values in (3.44) yields a Jacobi sum over 
[F,,z rather than the square of a Jacobi sum over II,,.) However, neither of 
the functions in (3.42) satisfies hypothesis (ii) of Theorem 2.3 when p $1 
(mod 8), so for the sF2 in (3.42) one does not have a continuation at all 
except under the hypotheses implied in Theorem 3.4. 

4. APBRY NUMBERS, FORMAL-GROUP CONGRUENCES, 
AND P-ADIC HYPERGEOMETRIC FUNCTIONS 

Consider the sequences defined for n > 0 by 

(4.la) 

(4.lb) 

(4.lc) 

(4.ld) 

(4.lv) 
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The c(n), b(n), and a(n) have occurred in proofs of irrationality measures 
for log2, c(2), and l(3) (cf.[19, 181); the b(n), d(n), v(n), a(n) occur as 
expansion coefficients of solutions to the Aptry differential operators 
(cf. [S, 21). For each of cc(n)=a(n), b(n), c(n), d(n), o(n). it is known that 
CO, = x:,“=O u(n) t2” dt is the invariant differential for a one-parameter com- 
mutative formal group law (cf. [2, 17, 191) and that the coefficients a(n) 
satisfy congruences of the Atkin-Swinnerton-Dyer type. Here we show 
how these congruences may be expressed naturally in terms of p-adic 
analytic continuations of hypergeometric functions. 

THEOREM 4.1. (i) Zfp E 1 (mod 4), then for each r > 0, 

C((P’- 1 l/2) 

m-’ - 1 l/2) 
= 251 (+ii; - 1) (mod@&). 

(ii) Zf p = 1 (mod 4), then for each r > 0, 

b((P’- 1 J/2) 
b((p’- l- 1 J/2) 

E $j2 (;iiii; 1) (modp’Z,). 
> 

(iii) Ifp E 1, 3 (mod 8), then for each r > 0, 

4W - 1 l/2) E 3g2 (‘; i;i; - 1) 
d((p’-‘- 1)/2) , 

(modp’z,). 

(iv) Let 4 denote the Teichmiiller representative of 4 in R,, i.e., ap = 4 
and $ = 4 mod pZ,. If p = 1 (mod 6), then for each r > 0, 

v((p’- 1)/2) - -, - . 

d(p’-’ - 1)/2) 
E $j2 ();‘l’; 4) (modp’z,). 

3 

(v) Let !P(q) = C,“= 1 ynq” = q n:= 1 (1 - q2”)4 (1 - q4”)4 denote the 
unique cusp form of weight 4 for the congruence subgroup r,(8) (with 
q = e2nir). Zf the p th Hecke polynomial H,(T) = 1 - ypT+p3T2 associated to 
!P has a p-adic unit root ail, then for each r > 0, 

a((p’- 1)/2) - - - - 

a((p’- l- 1)/2) 
z 4$j3 ( ‘;i’l”l’; 1) (modp’Z,). 

> 7 

Proof. It has been noted [ 19, 33 that C,“=, c(n)t2” dt is the expansion 
of the invariant differential wE on the elliptic curve 

E:y2=x(x2-6x+1) (4.2) 
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with respect to the local parameter t = l/G at infinity. The associated 
Atkin-Swinnerton-Dyer congruences read 

c((mp’-1)/2)-a,,c((mp’-‘-1)/2)+pc((mp’-I-1)/2) 

= -0 (mod p’Z) (4.3) 

for m, YEi?+, m odd, where 

1 -aE,p T+pT’ 
z(E’Fp’ T)= (1 - T)( 1 -pT) (4.4) 

is the zeta-function of E over [F,. For p E 1 (mod 4) E has non-super- 
singular reduction mod p, and therefore uE,p is a p-adic unit. It follows by 
induction on (4.3) that c((p’- 1)/2) is a p-adic unit for all r 3 0, and then 
that 

C((P’- 1)/2) 
c((p’- 1 - 1)/Z) = aE-p (mod p’z,), (4.5) 

where a E,p E Zi is a reciprocal root of Z(E/F,; T) (cf. [17, Theorem A.83). 
There are similar congruences in each of the remaining cases. In 

[ 171, J. Stienstra and F. Beukers have shown that C,“=, b(n) t2” dt, 
C,“=O d(n) t2” dt, and C,“=O v(n) t*” dt are expansions of invariant differen- 
tials of formal Brauer groups for certain K3 surfaces, from which they 
obtained the congruences 

b((mpr-1)/2)-(4a~-2p)b((mpr~1-1)/2)+p2b((mpr~2-1)/2) 

E 0 (mod p’i2) (4.6) 

for odd meif+, where p = 1 (mod 4), p = a2 + 4b*; 

d((mpr-l)/2)-(-1)‘P~“‘2(4a2-2p)d((mpr-’-1)/2) 

+p2d((mpr~2-l)/2)=0 (modp’Z) (4.7) 

for odd meZ+, wherep=l,3 (mod8),p=a2+2b2 and 

u((mp’- 1)/2)-(4a2-2p)u((mp’-‘- 1)/2) 

+ p2v((mpr - * - I)/2 z 0 (mod p’Z) (4.8) 

for odd me7+, where p= 1 (mod 6), p= a* + 3b*. In each of the cases 
(4.6), (4.7), (4.8), it is observed [17, Sect. 141 that the polynomial 
l-(4a2 - 2p) T +p*T* is the pth Hecke polynomial for a certain cusp form 
of weight 3 and level 16 (resp. 8; resp. 12). One therefore has congruences 
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similar to (4.5), with aE.P replaced by reciprocal unit roots of these Hecke 
polynomials. Beukers [2] has also demonstrated the congruence 

a((rnp’- 1)/2)-j’,a((nrp’-‘- 1)/2)+JAI((mp’-‘- 1)/2) 

= -0 (mod p’Z) (4.9) 

for the a(n), from which it follows that 

4(P’ - 1 l/2) 
a((p’-‘- 1)/27, 

(mod pr Z, 1, (4.10) 

whenever a; ’ is a p-adic unit root of H,(T) = 1 - y,T+p3T2. 
We now complete the proof of (iv). Let p be a prime, p E 1 (mod 6), 

let n, = (p’ - 1)/2, and let 9 be the domain of support of the analytic 
element ,s,(i, 4, 4; 1, 1; X) described in Theorem 2.3 (ii). Since (-n,.)(” = 
--Pz-,=$ (modpZ,) for O<i<r and (-n,)“‘=O for i>r, we see that 
352(-n,, --n,, 2 1, 1; X) also has support D for each r > 0. From the con- 
tinuity with respect to the parameters of the 3gz at (c(,, CQ, slj) = (1, f, i), 
and the uniform convergence of the limit in Theorem 2.3 (ii), we find that 
for each NE Z+ there exists rN > N such that 

F 
( 

--n t-+i, --nr+l, 7 
3 2 1. 1 

‘; .~) 

F 
( 

-n,, --n,, i 
3 2 

1, 1 

; .YP 

> 

F 
-n,, -n,, 4 

3 2 1, 1 ; x > 
= - 1 

> 

(mod pN 0) (4.11) 
-n -n 

F 
r- I5 r--l3 I 

3 2 

1, 1 

; xp 

for all x E D and all r > rN, which implies 

( -n r+1r --n 1 
F 

r+l, 2. 

3 2 1,l 7-y > 

( 

-nrr --n,, 
I 

3 F 2 

7 

1, 1 ; x > 

> 

(modp’“D), (4.12) 
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since each factor is a p-adic unit. For x E Z, I-I 3 we have also xp E Z, n a, 
so by s-fold iteration we obtain 

( 
-n r+sr --n 1 

F rtsr 2. 
3 2 1,l 3x > 

( 
-n I 

F 
j-+s- 13 -nr+s-113. 

3 2 1, 1 > x 
> 

(mod pNZp) (4.13) 

for all x E Z, n a, s 2 0, and r > r,,,. Upon setting x = 4 we note that the left 
side of (4.13) becomes simply u(n,+,)/v(n,+,- 1). From (4.8) with m = r = 1 
we see that 4 E a, so by [ 17, A.81 there exists j?3,p E Zp” such that 

44) 
- = lj3,p Ob,) (mod p’z,) 

for all t > 0. Fixing r > rN in and letting s -+ GO, we find therefore that the 
limit on the left side of (4.13) exists; as the right side is a rational function 
of x, we note that lim, _ r‘ 4@ = 4 and obtain 

I --n,, --n,, 5 
3 F 2 

lj3,p = lim 
1, 1 

;4 
> 

*-cc 
F ( 

-n 1 
r-19 -n,-,, 3 

3 2 
1, 1 

;4 

F 
( 

-n,, -nrr $ ,. 
3 2 1, 1 

;4 
= > - 

-n -n 1 (mod pNEp). (4.15) 
VP13 r-195 A 

3 F 2 
1, 1 

;4 
> 

Letting r -+ co and using the continuity at (&i, i) then yields 

P3.p = 382 

as NE Z + is arbitrary this implies 

(4.16) 

(4.17) 

which together with (4.14) gives the result in (iv). 
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The proofs in the remaining cases are analogous but somewhat simpler; 
the fact that x = 1 and x = - 1 are their own Teichmiiller representatives 
makes the rearrangement of factors in (4.12) unnecessary for those cases. 

The following corollary and ensuing remarks describe the p-adic integer 

P 3,P occurring in (4.17) and its companions from the other cases of 
Theorem 4.1. 

COROLLARY 4.2. For M= 2, 3,4 let /lM.p denote the reciprocal of the 
p-adic unit root of the polynomial P M,p( T) = 1 - (4a2-2p)T+p2T2 whenever 
p=a’+Mb2, a, bEZ. W’h I1 h it a ot er notations as in Theorem 4.1 and its 
proof, one has: 

(i) Zf p E 1 (mod 4), then 

a E,p=2g1 (qi: -1). 

(ii) Zf p = 1 (mod 4), then 

111 
B.Q = 352 ( > 

2;zi2; 1 . 
9 

(iii) Zfpf 1, 3 (mod 8), then 

- - - 
p,.,=(-l)i~~1123~2(:;:;:; -1). 

9 

(iv) Zfpz 1 (mod 6), then (as in (4.17)) 

(v) Zf p is a prime for which the p th Hecke polynomial H,(T) 
associated to the cusp form Y(q) has a p-adic unit root a;‘, then 

Proof: This is immediate from Theorem 4.1 and the congruences (4.5), 
(4.6), (4.7), (4.8), and (4.10). 

Remarks. In [ 17, Sect. 141, it is shown that for M = 2, 3, 4, P,,+(T) is 
the pth Hecke polynomial associated to the cusp form G,,,(q), where 

Qi,(q)=q ii (1-q2”)3u-q6n)3> 
n=l 

(4.18) 
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@4(q)=q fi (1 -q4”Tv (4.19) 
n=l 

&(q)=q fi (1-q”)2(1-qZ”)(1-q4”)(1-q*n)2, (4.20) 
n=l 

and that QM(q) is the unique cusp form in S,(f,(4M),&,), with the 
character E,,,, on (Z/4X?) x defined by 

sM(dmod4M)= (d,4M)= 1. (4.21) 

Therefore the above corollary expresses unit roots of certain Hecke polyno- 
mials for weight 3 (resp. 4) in terms of p-adic $j2 (resp. 453) functions. 

In case (i) (resp. (ii)) of Theorem 4.1, one may also apply Theorem 3.1 
(resp. 3.3) to conclude that the hypergeometric values given by the theorem 
may be expressed in terms of r,, as 

(4.22) 

(4.23) 

In the first case, this value in the congruence for the c(n) has essentially 
been given by Coster [3, Sect. 61; the second (for the b(n)) may be 
obtained from the first together with a comparison with Lemma 2.8 (ii) and 
Theorem 3.1 (ii) of [4] and cases I and III of Theorem 13.1 of [17]. By 
comparison with Corollary 4.2 (ii) we see that (4.23) gives the F,-Jacobi 
sum formula 

for p = 1 (mod 4). 

p4,p = ~(~(1 -PI/~, o(I -N/4)2 (4.24) 

We do not know of an expression similar to (4.22) or (4.23) for the 
values of the hypergeometric functions in (iii), (iv), (v) in terms of r,. 
Since x = - 1 and x =4 are ordinary points of the differential equation 
(2.13) satisfied by the 3F2 of cases (iii), (iv), these expressions might not 
readily reduce to gamma values. In addition we note that in cases (i), (ii), 
(iii), (iv), the set of primes for which the continuation exists consists 
precisely of congruence classes (mod 24), whereas in case (v) the behavior 
is more irregular (for 2 <p < 80,000 the only primes for which the condi- 
tion fails are p = 11 and p = 3137 [ 123). It therefore seems likely that if 
there is such an expression in case (v), it is not of such a simple form. 

In conclusion we remark that other types of formal-group congruences 
may be expressed in terms of p-adic hypergeometric functions. 
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M. Coster [4] has given mod p*’ determinations extending certain formal- 
group congruences for binomial coefficients; we have seen how such 
formal-group congruences may also be expressed in terms of well-poised 
hypergeometric functions via Theorem 3.1 (with 2a = 6) and Theorem 3.3 
(with 2a = b = c). J. Stienstra [ 161 has given a construction for logarithms 
of formal Picard groups and formal Brauer groups which possess integral 
representations resembling those of (hyper) elliptic integrals. The 
congruences associated to some of the examples (e.g., [ 16, pp. 908-909, 
Example 5.5, and the d= 2, 3 cases of Example 4.131) in that paper may 
also be expressed in terms of well-poised hypergeometric functions via 
Theorems 3.1 and 3.3 and the method of Section 4. We have obtained other 
unit-root formulae similar to those in [6] from Stienstra’s construction, a 
topic we intend to address in a future article. Of interest also is the paper 
of T. Honda [ 111 concerning formal groups obtained by requiring that the 
invariant differential be given by a generalized hypergeometric function. 
Although this is a different notion than the present work, the expansion 
coefftcients of these invariant differentials are products of generalized 
binomial coefficients, and therefore it may be that some of the associated 
congruences may be studied via the ideas of this paper. 
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