
Discrete Mathematics 270 (2003) 279–289
www.elsevier.com/locate/disc

Congruences for degenerate number sequences

Paul Thomas Young
Department of Mathematics, University of Charleston, Charleston, SC 29424, USA

Received 13 March 2001; received in revised form 11 February 2002; accepted 11 March 2002

Abstract

The degenerate Stirling numbers and degenerate Eulerian polynomials are intimately connected
to the arithmetic of generalized factorials. In this article, we show that these numbers and similar
sequences may in fact be expressed as p-adic integrals of generalized factorials. As an application
of this identi4cation we deduce systems of congruences which are analogues and generalizations
of the Kummer congruences for the ordinary Bernoulli numbers.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The interpretation of Stirling numbers as connection coe8cients of linear transfor-
mations between generalized factorials has given rise to many useful generalizations of
these numbers. For example, the degenerate Stirling numbers S(n; k|�) of the second
kind, which were introduced by Carlitz, satisfy the relations ([2], Eq. (2.12))

(x|�)n =
n∑

k=0

S(n; k|�)(x|1)k ; (1.1)

where (x|�)n is the generalized falling factorial de4ned in Section 2. This type of re-
lation has permitted a uni4ed treatment [12] of the various kinds of generalizations
of Stirling numbers. The noncentral Stirling numbers and noncentral Lah numbers
have been interpreted as higher-order di=erences of generalized factorials in [5]. Com-
binatorial properties of degenerate Bernoulli and Stirling polynomials have also been
e=ectively studied by considering them as divided di=erences of binomial coe8cients
in [1]. The approach of this article will be to instead realize all these generalizations of
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Stirling numbers, and other combinatorially important numbers, as p-adic integrals of
generalized factorials (x|�)n. This realization implies general systems of congruences
among these numbers, which are natural analogues of the Kummer congruences for
the ordinary Bernoulli numbers (cf. [19], Cor. 5.14, and [20], Eq. (4.9)).

Carlitz [2] de4ned the second kind of degenerate Stirling numbers S(n; k|�) for � �= 0
by means of the exponential generating function

((1 + �t)	 − 1)k = k!
∞∑
n=k

S(n; k|�) tn

n!
; (1.2)

where �	 = 1. Since (1 + �t)	 → et as � → 0 this is evidently an extension of the
generating function

(et − 1)k = k!
∞∑
n=k

S(n; k)
tn

n!
(1.3)

for the usual Stirling numbers of the second kind S(n; k)=S(n; k|0). The method of this
paper applies to any sequence �n(�) whose exponential generating function is of the
form h((1+�t)	) with h(T ) a formal power series in Zp[[T −1]], where Zp is the ring
of p-adic integers; we call such a sequence �n(�) the “degenerate number sequence
arising from h” in recognition of the analogy between the generating functions (1.2)
and (1.3) for the degenerate and usual Stirling numbers of the second kind. So in our
terminology k!S(n; k|�) is the degenerate number sequence arising from h(T )=(T−1)k .

Carlitz also considered the degenerate Eulerian polynomials An(�; x), which are re-
lated to generalized factorials ([2, Eqs. (7.1) and (7.5)]) by the identity

∞∑
k=0

(k|�)nxk =
An(�; x)

(1 − x)n+1 (1.4)

for x �= 1 (here we use An(�; x) for the polynomial Carlitz referred to as n!An(�; x)).
Carlitz showed that these polynomials may be de4ned for � �= 0 by

1 − x
1 − x(1 + �t(1 − x))	

=
∞∑
n=0

An(�; x)
tn

n!
; (1.5)

where �	 = 1 ([2], Eqs. (1.25) and (7.9)), which reveals that the values of An(�; x)
may be regarded as degenerate number sequences, in our terminology, when 1 − x is
a p-adic unit (see Section 4). Taking the limit as � → 0 yields the usual Eulerian
polynomials An(x) = An(0; x) de4ned by

1 − x
1 − xe(1−x)t =

∞∑
n=0

An(x)
tn

n!
: (1.6)

In Section 4 we show that if p is an odd prime, 1 − x is a p-adic unit, and �∈pZp,
then for m ≡ n (mod (p − 1)pa) we have the congruence

Am(�; x) ≡ An(�; x) (mod pAZp); (1.7)

where A = min{m; n; a + 1}.
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An congruence similar to (1.7) for the degenerate Stirling numbers S(n; k|�) of the
second kind, which we prove in Section 3, is

k!S(m; k|�) ≡ k!S(n; k|�) (mod pAZp); (1.8)

where A = min{m; n; a + 1}; this congruence also holds when m ≡ n (mod (p − 1)pa)
and �∈pZp. A natural feature of our method is that stronger congruences may be
obtained for the related degenerate number sequences arising from the power series
’h(T ), where ’ is the linear transformation on Zp[[T − 1]] de4ned formally by

’h(T ) = h(T ) − 1
p

∑
�p=1

h(�T ) (1.9)

(cf. [20], Eq. (2.14)). For example, let Tp (n; k|�) denote the degenerate number
sequence arising from the polynomial ’h(T ), where h(T ) = (T − 1)k . In Section 3
we prove congruences implying

Tp(m; k|�) ≡ Tp(n; k|�) (mod pa+1Zp) (1.10)

for m ≡ n (mod (p − 1)pa) and �∈pZp. In this case the values at � = 0, Tp(n; k) =
Tp(n; k|0), are the “partial” Stirling numbers studied by Lundell [16], Davis [8], and
Clarke [7].

While many treatments of degenerate number sequences allow for arbitrary complex
parameters, the parameter values in many of the important examples are actually ratio-
nal numbers or integers. For this reason it is also valuable to be able to represent the
sequences p-adically. Our basic representation theorem concerning degenerate number
sequences, whose proof appears in Section 2, is as follows:

Theorem 1.1. Let h∈Zp[[T − 1]] and de2ne the polynomials �n(�), �̂n(�) for n¿ 0
by h((1 + �t)	) =

∑∞
n=0 �n(�)(tn=n!) and (’h)((1 + �t)	) =

∑∞
n=0 �̂n(�) (tn=n!). Then

there is a Zp-valued measure �h on Zp such that

�n(�) =
∫
Zp

(x|�)n d�h(x)

and

�̂n(�) =
∫
Z×

p

(x|�)n d�h(x)

for all �∈Zp and all n. Consequently �n(�); �̂n(�)∈Zp for all �∈Zp and all n.

If the parameters are integers (meaning that h∈Z[[T −1]] and �∈Z) then �n(�)∈Z
and the above representation for �n(�) is independent of the choice of the prime p.
This cannot be said for �̂n(�), since the de4nition of ’ itself is dependent on p. These
two representations form the basis for our congruences. If p is a prime number we
de4ne the associated quantity q by

q =

{
p if p¿ 2;

4 if p = 2:
(1.11)

Therefore �(q) = p − 1 if p is odd and �(q) = 2 if p = 2. Congruences (1.5), (1.8),
(1.10) etc. are derived from the following theorem, which follows from Theorem 1.1.
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Theorem 1.2. With notation as above, if �∈pZp and m ≡ n (mod �(q)pa) with a¿ 0
then

�m(�) ≡ �n(�) (mod pAZp) and �̂m(�) ≡ �̂n(�) (mod pa+1Zp);

where A = min{m; n; a + 1}, whereas if �∈Z×
p then for all m¿ 0 we have

�m(�) ≡ 0 (mod m!Zp) and �̂m(�) ≡ 0 (mod m!Zp):

In Section 3 we apply this theorem to the various generalizations of Stirling numbers,
and in Section 4 we apply it to the Eulerian polynomials. Although we do not give
the details here, the theorem also applies to the degenerate Bell numbers introduced
by Carlitz [2], as well as other combinatorial sequences.

2. Proof of main results

Throughout this paper p will denote a prime number, Zp the ring of p-adic inte-
gers, Z×

p the multiplicative group of units in Zp, and Qp the 4eld of p-adic numbers.
We use Zp[T − 1] and Zp[[T − 1]] to denote, respectively, the ring of polynomials
and of formal power series in the indeterminate (T − 1) over Zp. The p-adic valua-
tion “ordp” is de4ned by setting ordp (x) = k if x = pky with y∈Z×

p . A congruence
x ≡ y (mod mZp) is equivalent to ordp (x − y)¿ ordp m, and if x and y are rational
numbers this congruence for all primes p is equivalent to the de4nition of congruence
x ≡ y (mod m) given in [11] (Section 2). The symbols � and 	 will always represent
elements of Qp satisfying �	=1. The generalized falling factorial (x|�)n with increment
� is de4ned by

(x|�)n =
n−1∏
i=0

(x − i�) (2.1)

for positive integers n, with the convention (x|�)0 =1. Note that if � �= 0 then (x|�)n =
�n(�−1x|1)n.

Proof of Theorem 1.1. Let � denote the set of all Zp-valued measures on Zp. As is
well known (cf. [19,18]), there is a one-to-one correspondence

� ↔ Zp[[T − 1]]; (2.2)

under which each measure �∈� corresponds to the formal power series

h�(T ) =
∫
Zp

T x d�(x): (2.3)

The integral in (2.3) represents a formal power series in Zp[[T − 1]] via the binomial
expansion∫

Zp

T x d�(x) =
∞∑

m=0

(∫
Zp

(
x

m

)
d�(x)

)
(T − 1)m; (2.4)
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which is convergent for T ∈ 1 + pZp. Let � = �h be the measure which corresponds
to our power series h(T ) under this identi4cation. Now if t ∈pZp then T = (1 + �t)	

converges to an element of 1+pZp for any �∈Zp. Substituting T =(1+�t)	 in (2.3)
yields a formal power series identity

∞∑
n=0

�m(�)
tn

n!
=
∫
Zp

(1 + �t)	x d�h(x): (2.5)

Therefore since
dn

dtn
((1 + �t)	x)

∣∣∣∣
t=0

= (x|�)n (2.6)

and

dn

dtn

( ∞∑
m=0

�m(�)
tm

m!

)∣∣∣∣∣
t=0

= �n(�); (2.7)

we have

�n(�) =
∫
Zp

(x|�)n d�h(x): (2.8)

From the de4nition of ’ we compute

’h(T ) = h(T ) − 1
p

∑
�p=1

h(�T )

=
∫
Zp


1 − 1

p

∑
�p=1

�x


Tx d�h(x): (2.9)

Since

1
p

∑
�p=1

�x =

{
0 if x∈Z×

p ;

1 if x∈pZp;
(2.10)

we then have

’h(T ) =
∫
Z×

p

T x d�h(x); (2.11)

convergent for T ∈ 1 + pZp, and valid as a power series identity in Zp[[T − 1]].
Substituting T = (1 + �t)	 in (2.11) with t ∈pZp and evaluating the nth derivative
(with respect to t) at t = 0 yields

�̂n(�) =
∫
Z×

p

(x|�)n d�h(x): (2.12)

As �h is a Zp-valued measure, both �n(�) and �̂n(�) lie in Zp for all �∈Zp by (2.8)
and (2.12).

We now turn to the congruences. It is easily established by induction that if A ≡
B (mod paZp[x]) then Apb ≡ Bpb

(mod pa+bZp[x]) for any nonnegative integer b



284 P.T. Young /Discrete Mathematics 270 (2003) 279–289

(cf. [17], Proposition VII.3.2.4, p. 407). This principle will be needed for the proof
of Theorem 1.2 and of the following proposition, which may be of some independent
interest.

Proposition 2.1. If p is an odd prime and �∈pZp then for all positive integers m
and r we have

(x|�)mpr ≡ xmpr
(mod pr+1Zp[x]):

For p = 2, if �∈ 2Z2 then for all positive integers m and r we have

(x|�)m2r ≡ xm2r
(mod 2rZ2[x]):

Proof. In [9] (Lemma 3) it is shown that for odd primes p,

(x|1)pr ≡ (xp − x)p
r−1

(mod prZ[x]); (2.13)

while for p = 2 we have

(x|1)2r+1 ≡ (x2 − x)2r
(mod 2rZ[x]): (2.14)

Begin by regarding (x|�)n as a homogeneous polynomial in x and � of degree n in x,
so that (x|�)n = �n(x�−1|1). Replacing x by x�−1 and multiplying both sides of (2.13)
by �pr

yields

(x|�)pr ≡ xpr−1
(xp−1 − �p−1)p

r−1
(mod pr�Z[x; �]); (2.15)

since both sides of (2.13) are monic polynomials of degree pr . By means of an eval-
uation homomorphism Z[x; �] → Zp[x], we now regard � as an element of pZp. This
implies that

(x|�)pr ≡ xpr−1
(xp−1 − �p−1)p

r−1
(mod pr+1Zp[x]): (2.16)

But since �∈pZp, by induction we have

(xp−1 − �p−1)p
r−1 ≡ xpr−1(p−1) (mod pr+1Zp[x]) (2.17)

for all positive integers r. By (2.16) we then have

(x|�)pr ≡ xpr
(mod pr+1Zp[x]): (2.18)

Then if m is any positive integer, we have

(x|�)mpr =
m−1∏
j=0

(x − jpr�|�)pr ≡
m−1∏
j=0

(x − jpr�)p
r

≡ xmpr
(mod pr+1Zp[x]); (2.19)

proving the proposition for odd primes p. The result for p = 2 follows in the same
way beginning from (2.14).

Since the multiplicative group (Zp=qpaZp)× has order �(q)pa for a¿ 0 (where q
is de4ned by (1.11)), it follows that x�(q)pa ≡ 1 (mod qpaZp) for all x∈Z×

p . This fact
may be combined with the above results to prove our main congruence results.
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Proof of Theorem 1.2. Assume that �∈pZp and that m¿ n¿ 0. Then by Theorem
1.1,

�m(�) − �n(�) =
∫
Zp

(x|�)n((x − n�|�)m−n − 1) d�h(x) (2.20)

and
�̂m(�) − �̂n(�) =

∫
Z×

p

(x|�)n((x − n�|�)m−n − 1) d�h(x): (2.21)

If m ≡ n (mod �(q)pa) then by Proposition 2.1 we have

(x − n�|�)m−n ≡ (x − n�)m−n ≡ xm−n ≡ 1 (mod pa+1Zp) (2.22)

for all x∈Z×
p . Since the integrand in (2.21) lies in pa+1Zp for all x∈Z×

p and �h is a
Zp-valued measure, we have �̂m(�) − �̂n(�)∈pa+1Zp. If x∈pZp then (x|�)n ∈pnZp,
so by (2.20) we have �m(�) − �n(�)∈pAZp where A = min{n; a + 1}, proving the
theorem in the case �∈pZp.

If �∈Z×
p then for any x∈Zp we have (x|�)m =�m( �−1x

m )m!∈m!Zp. From (2.8) and
(2.12) it follows directly that �m(�) and �̂m(�) lie in m!Zp for all m, completing the
proof of the theorem.

Remarks. The congruence �m(0) ≡ �n(0) (mod pAZp) for � = 0 is stated in [18]
(Lemma 1) in the case of rational functions h. In [20] we showed that for � = 0
one has in fact the stronger result !k

c �̂m(0) ≡ 0 (mod pk(a+1)Zp) for all positive inte-
gers k, where !c is the forward di=erence operator with increment c ≡ 0 (mod �(q)pa).
However, the corresponding result for general �∈pZp does not hold for the higher
powers of !c.

The congruences of Theorem 1.2 do imply that the degenerate number sequences
�n(�) and �̂n(�) are p-Honda sequences (cf. [17]) for all odd primes p and all �∈pZp;
that is, they satisfy

�mpr (�) ≡ �mpr−1 (�) (mod prZp) and �̂mpr (�) ≡ �̂mpr−1 (�) (mod prZp)
(2.23)

for all positive integers m and r. This means that for �∈pZp the di=erential forms
∞∑
n=1

�n(�)Tn dT
T

and
∞∑
n=1

�̂n(�)Tn dT
T

; (2.24)

which are essentially formal Laplace transforms of h((1 + �t)	) and (’h)((1 + �t)	),
are invariant di=erentials for formal group laws over Zp which are isomorphic over
Zp to the formal multiplicative group law F(X; Y ) = X + Y − XY .

3. Generalized Stirling numbers

In [12] a very general class S(n; k; �; &; r) of sequences which generalize the Stirling
numbers was de4ned by the relations

(x|�)n =
n∑

k=0

S(n; k; �; &; r)(x − r|&)k : (3.1)
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These sequences satisfy inverse relations in pairs related by (�; &; r) → (&; �;−r); that
is, (3.1) is inverse to

(x|&)n =
n∑

k=0

S(n; k; &; �;−r)(x + r|�)k : (3.2)

An exponential generating function for the sequence S(n; k; �; &; r) is

(1 + �t)r=�
(

(1 + �t)&=� − 1
&

)k

= k!
∞∑
n=0

S(n; k; �; &; r)
tn

n!
(3.3)

[12] (Theorem 2), which indicates that k!S(n; k; �; &; r) is the degenerate number se-
quence arising from h(T ) = T r(T& − 1)k =&k (with � = �), if this power series lies in
Zp[T −1]. This will always be the case whenever r ∈Zp and &∈Z×

p . If &∈pZp then
Theorems 1.1 and 1.2 still apply to the series &kh(T ), which lies in Zp[T −1], but the
congruences resulting from Theorem 1.2 for S(n; k; �; &; r) will be signi4cantly weaker
than those for &∈Z×

p , which we record here.

Theorem 3.1. Suppose that r ∈Zp and &∈Z×
p . Then for all �∈pZp we have

k!S(m; k; �; &; r) ≡ k!S(n; k; �; &; r) (mod pAZp)

whenever m ≡ n (mod �(q)pa), where A = min{m; n; a + 1}, and for all �∈Z×
p we

have

k!S(m; k; �; &; r) ≡ 0 (mod m!Zp)

for all m¿ 0.

For odd primes p, putting m = p and n = 1 in this theorem yields the congruence

S(p; k; �; &; r) ≡ 0 (mod pZp) (3.4)

for 1¡k ¡p as long as &∈Z×
p and �; r ∈Zp; this congruence has been given for

integers �; &; r in [12] (Theorem 3). We mention some other special cases to which
this theorem applies. If r = 0, � = 0, and & = 1 then S(n; k; 0; 1; 0) = S(n; k) are the
classical Stirling numbers of the second kind; in this case the result of Theorem 3.1
has appeared in [18] (Theorem A), but is stated incorrectly there (the terms S(n; k),
S(m; k) should be replaced by k!S(n; k) and k!S(m; k)). If �=0 and &=1 we have the
weighted Stirling numbers of the second kind R(n; k; r) studied by Carlitz [3,4], and
the congruences are valid when the weight r is a p-adic integer. This case includes the
noncentral Stirling numbers of the second kind (cf. [14,6]) and the noncentral Lah
numbers [6]. If &=1 and r =0 we have the degenerate Stirling numbers of the second
kind and the congruences hold for �=�∈Zp. If &=1 we have the degenerate weighted
Stirling numbers of the second kind studied by Howard [10], and the congruences hold
when � = �∈Zp and the weight r is a p-adic integer.

For a prime p let Tp(n; k; �; &; r) be the degenerate number sequence arising from
’h(T ), where h(T ) = T r(T& − 1)k =&k with � = �. We have the following congruences
directly from Theorem 1.2.
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Theorem 3.2. Suppose that r ∈Zp and &∈Z×
p . Then for all �∈pZp we have

Tp(m; k; �; &; r) ≡ Tp(n; k; �; &; r) (mod pa+1Zp)

whenever m ≡ n (mod �(q)pa), and for all �∈Z×
p we have

Tp(m; k; �; &; r) ≡ 0 (mod m!Zp)

for all m¿ 0.

As mentioned in Section 1, the sequence Tp(n; k) = Tp(n; k; 0; 1; 0) is the sequence
of “partial” Stirling numbers studied in [16,7,8]; in general for � = � = 0 we may
write

Tp(n; k; 0; &; r) = &−k
∑

06j6k
pA&j+r

(−1)k−j

(
k

j

)
(&j + r)n: (3.5)

Clarke [7] conjectured that Tp(n; k) and k!S(n; k) always have the same p-adic valu-
ation. This motivates the following more general question: For which h∈Zp[[T − 1]]
is it true that �n(0) and �̂n(0) have the same p-adic valuation for all n? Clarke’s
conjecture is that h(T ) = (T − 1)k always satis4es this condition.

4. Degenerate Eulerian polynomials

We de4ne the degenerate weighted Eulerian polynomials An(�; r; x) by
∞∑
k=0

(k + r|�)n xk =
An(�; r; x)
(1 − x)n+1 (4.1)

for � �= 0 and x �= 1. We remark that the polynomial An(�; r; x) was denoted by
n!An(�; x; r) in [2] and by An(x; r|�) in [13]. By [15] (Proposition 2.1) we have the
identities

An;k(�; r) =
k∑

j=0

(−1)j
(

n + 1
j

)
(k + r − j|�)n (4.2)

and

(t + r|�)n =
n∑

k=0

An;k(�; r)

(
t + n − k

n

)
; (4.3)

where

An(�; r; x) =
n∑

k=0

An;k(�; r)xk : (4.4)

These polynomials have been treated in [2] and [13], and may also be studied by
the methods of Koutras [15]. When the weight r is taken to be zero we have the
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degenerate Eulerian polynomials An(�; 0; x) = An(�; x). Carlitz [2] showed that these
polynomials have the generating function

(1 − x)(1 + �t(1 − x))	r

1 − x(1 + �t(1 − x))	
=

∞∑
n=0

An(�; r; x)
tn

n!
(4.5)

and taking the limit as � → 0 we get

(1 − x)e(1−x)rt

1 − xe(1−x)t =
∞∑
n=0

An(0; r; x)
tn

n!
: (4.6)

Taking r = 0 in (4.6) yields the usual Eulerian polynomials An(x) = An(0; 0; x). The
following congruences may be derived from Theorem 1.2.

Theorem 4.1. Suppose that 1 − x∈Z×
p and r ∈Zp. Then if �∈pZp and m ≡ n

(mod �(q)pa) we have

Am(�; r; x) ≡ An(�; r; x) (mod pAZp);

where A = min{m; n; a + 1}, and if �∈Z×
p we have

Am(�; r; x) ≡ 0 (mod m!Zp)

for all m¿ 0.

Proof. If 1 − x∈Z×
p and r ∈Zp, then the formal power series

h(T ) =
(1 − x)T (1−x)r

1 − xT 1−x = T (1−x)r
(

1 −
(

x
1 − x

)
(T 1−x − 1)

)−1

(4.7)

lies in Zp[[T−1]], because x=(1−x)∈Zp and T 1−x−1 is a power series in Zp[[T−1]]
with no constant term. If we put �′ = (1 − x)� and �′	′ = 1 then h((1 + �′t)	

′
) is the

generating function in (4.5) and the corresponding numbers �n(�′) = An(�; r; x) satisfy
the congruences of Theorem 1.2. Since ordp �′ = ordp �, the result follows.

References

[1] A. Adelberg, A 4nite di=erence approach to degenerate Bernoulli and Stirling polynomials, Discrete
Math. 140 (1995) 1–21.

[2] L. Carlitz, Degenerate Stirling, Bernoulli, and Eulerian numbers, Utilitas Math. 15 (1979) 51–88.
[3] L. Carlitz, Weighted Stirling numbers of the 4rst and second kind—I, Fibonacci Quart. 18 (1980)

147–162.
[4] L. Carlitz, Weighted Stirling numbers of the 4rst and second kind—II, Fibonacci Quart. 18 (1980)

242–257.
[5] C. Charalambides, M. Koutras, On the di=erences of the generalized factorials at an arbitrary point and

their combinatorial applications, Discrete Math. 47 (1983) 183–201.
[6] C. Charalambides, J. Singh, A review of the Stirling numbers, their generalizations and statistical

applications, Comm. Statist. Theory Methods 17 (1988) 2533–2595.
[7] F. Clarke, Hensel’s lemma and the divisibility by primes of Stirling-like numbers, J. Number Theory

52 (1995) 69–84.
[8] D.M. Davis, Divisibility by 2 of Stirling-like numbers, Proc. Amer. Math. Soc. 110 (1990) 597–600.



P.T. Young /Discrete Mathematics 270 (2003) 279–289 289

[9] A. Gertsch, A. Robert, Some congruences concerning the Bell numbers, Bull. Belg. Math. Soc. 3 (1996)
467–475.

[10] F.T. Howard, Degenerate weighted Stirling numbers, Discrete Math. 57 (1985) 45–58.
[11] F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1996) 175–185.
[12] L. Hsu, P. Shiue, A uni4ed approach to generalized Stirling numbers, Adv. Appl. Math. 20 (1998)

366–384.
[13] L. Hsu, P. Shiue, On certain summation problems and generalizations of Eulerian polynomials and

numbers, Discrete Math. 204 (1999) 237–247.
[14] M. Koutras, Non-central Stirling numbers and some applications, Discrete Math. 42 (1982) 73–89.
[15] M. Koutras, Eulerian numbers associated with sequences of polynomials, Fibonacci Quart. 32 (1994)

44–57.
[16] A. Lundell, A divisibility property of Stirling numbers, J. Number Theory 10 (1978) 35–54.
[17] A. Robert, A Course in p-adic Analysis, Springer, New York, 2000.
[18] H. Tsumura, On some congruences for the Bell numbers and for the Stirling numbers, J. Number Theory

38 (1991) 206–211.
[19] L. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.
[20] P.T. Young, Congruences for Bernoulli, Euler, and Stirling numbers, J. Number Theory 78 (1999)

204–227.


	Congruences for degenerate number sequences
	Introduction
	Proof of main results
	Generalized Stirling numbers
	Degenerate Eulerian polynomials
	References


