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A g-ANALOG OF NEWTON’S SERIES, STIRLING
FUNCTIONS AND EULERIAN FUNCTIONS

Jiang ZENG and Changgui ZHANG

Abstract. — Recently, Butzer et al. [BH1, BH2, BHS] have studied some classical
combinatorial functions such as factorial functions, Stirling numbers and Fulerian
numbers of fractional orders. In the present paper we show that much the same is true
in the case of the g-analogs. Meanwhile we give some results for the convergence of a
g-Newton interpolation series.
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0. Introduction
Throughout this paper ¢ is a real number such that 0 < ¢ < 1. For € define

gt —1
g—1°

2] =

where and in the sequal, we take the principal value of the function x — ¢*. For n € ,
let

[z]o
[0]"

and define the ¢-binomial coefficients by

m =15 [i] = [[i]]’f (n>1).

L [ea=lelle—1-fe—n+1  (n21),
=Pl == (e 1),

Set also
400

(0.1) (250)00 = [J(1 — "),
k=0

and for « €

(02) ()0 = "l
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where x¢® = ¢~" for any n € . In particular, we have the ¢-shifted factorials :

(x59)0 =1, (25¢)n = (1 —2)(1 —2q)--+ (1 —2g" 1),

and then the following expression [GR, p. 20] for ¢-binomial coefficients :

Recall that the ¢-Gamma function (c¢f. [GR, p. 16]) is defined for Rz > 0 by

(¢ @)oo -
0.3 Fy(x)= ——(1—¢q) %
03) o) = Ly
Note that lim, .- I'y(z) = I'(z), the reader is refered to KoorwINDER [Ko] for a
rigorous proof of this formula.

We shall require the ¢-binomial formula (¢f. [GR, p. 7]) :

+oco
(a;9)n 5 (a%q)ec .
(04 ,;(Q;Q)nx RNET

There are two classical ¢g-analogs of the exponential function defined as follows :
X 1
eq(:z;):Z— for |$|<1_q7
and

I q(g)x"
E (z) = Z:O W for T €.

By the ¢-binomial formula (0.4) we may write

1
1 —q)%;q)oo

(05) eQ(x) = (( ’ EQ(x) = ((q - 1)1‘, Q)oo-
Hence ey(z) - Ej(—z) = 1.

As usual, for any function f(x) of x, we define the shift operator E : Ef(x) =
f(z + 1), the identity operator I : If(x) = f(x), and the ¢-difference operator by
means of

Ay=I Al=(E—q¢"'INE-¢"*I)---(E—1I).

q
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It is readily seen that

(0.6) Alf(z) =3 (1) [Z] ¢ fx+n— k).

k=0
We call g-Newton’s series a series of the form
= r—a
(0.7) nz::O an [ " ] ,

where a € . We remark that if series (0.7) converges to a function f() in an open region
containing , then the coefficients a, are given by (0.6) with z = «a, i.c., a, = A} f(a).
For this reason, we say also that series (0.7) is the ¢-Newton’s interpolation series
associated to the function f(x).

Definition 1. For « € and n € , the ¢-Stirling function of second kind is defined by
Sq(a,0) = 64,0 and forn > 1

S (an) = ﬁ ATl
(0.8) _ ﬁ k:0<_1)k M Bn — ke,

REMARK : The ¢-Stirling function Sy(«,n) was first introduced by Carritrz [Cal]
in the case a € .

Definition 2. For « € andn € , the ¢—Eulerian function is defined by

(0.9) Agan) =Y (-1 [O‘ Z 1] ¢ +1 - k).

k=0

REMARK : The ¢-Eulerian function A,(«,s) was also first introduced by CARLITZ
[Ca2] in the case « € . It may be interesting to recall here the combinatorial motivation
of this definition. Let &,, be the set of permutations of {1,2,---.n}. For o € &,, we
say that o has a descent at 1,1 <i<n—1,if o(¢) > o(i + 1) and define

deso ={i|o(i) >0o(i+1)} and majo = Z i
t€des o

For exemple,if 0 =413652 € &g, thendeso = {1,4,5} andsomajo = 1+4+5 =
10. Let &, be the set of permutations with & descents. The ¢-Eulerian numbers
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Ay(n,s) (0 < s <n)[Cal, Ca2, Raw] is then the generating function of the maj on
Gnk:

Ay(n,s) = Z gm

UEGn,k

This paper was motivated by the recent works of BuTzer et al. [BH1, BH2,
BHS], who investigated various properties of some well-known combinatorial numbers
and functions such as factorial functions, binomial coefficients, Stirling numbers and
Eulerian numbers in the case that the integer n is replaced by a real «. As is
well-known (probably only for combinatorialists), most combinatorial functions have
natural “g-analogues”, so it is natural to ask whether there are some “g-analogues” of
the works of BUuTzER et al. [loc. cit.].

The purpose of this paper is to study the ¢-Stirling numbers S,(n, k) of second kind
and the ¢-Eulerian numbers A (n, k) when the integer n € 1is replaced by a complex
a € . As we shall see, most properties of these numbers or functions remain true and
can be proved almost mutadis mutandis in the same way as the restrictive case n € ,

except the two following formulae :

+oo
(0.10) > Sala, kel =[]
k=0

+oco
(0.11) > Agla k) =Ty(a+1).

Note that the proofs of the above two formulae are not easy in the case ¢ = 1.
Indeed, for ¢ = 1, formula (0.10) for £ax > —1 was proved in [BHS] by a deep result
on Newton’s series, while formula (0.11) was proved in [BH2] for « € (=1, +00) to be
equavelent to a result of fractional calculus and also proved in [Zh] in the half plane
Rz > —1 by combining a Tauberian theorem and some fine analytic manipulations.
In this paper, we shall investigate the validity of the two formulae (0.10) and (0.11).

This paper is organized as follows. We shall first introduce a g—analog of the
Newton interpolation series in the first section, where we obtain a ¢-analog of the
formulae of CAHEN and PINCHERLE for the abscissa of convergence (see Theorem
1.3). These results may have some interests on themselves. In the second section, we
review some results about the growth of entire functions and then apply them to the
study of the convergence of ¢-Newton’s series. The third section will be devoted to
the ¢—Stirling functions, where we show especially that their generating function has
g-exponential growth of order one and of finite type and give the convergence region of
(0.10) (see Theorem 3.4 and Theorem 3.7). Finally, the g—Eulerian functions will be
studied in the last section, where we shall determine the convergence region of (0.11)

in particular (see Theorem 4.4).
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1. A ¢-Newton interpolation series
Consider the following ¢-Newton series :

(1.1) a0+a1[le]+a2[x;1]+a3[“’_1]+...,

Note that, if ¢ — 17, series (1.1) reduces formally to

r—1 r—1 r—1
ag + ay 1 + ag 9 + as 3 +oe

whose abscissa of convergence, say o, is well-known (c¢f. [Ge, p. 133]) :

log ‘EZ:O(_l)kak‘

(Cahen) o = limsup if o>0;
n—t 00 logn
_ _ log |42 (= 1)Fay -
(Pincherle) o = limsup if o <O.
n—-+oo ].Ogn
For the latter use, set
x—1
1.2 bn — Qn )
(12 =l
bp(z) [z —1],
1.2a cnlz,y) = = )
2 06 T
where x,y € and y is a non positive integer.
Lemma 1.1. For given x,y € and y # 1, 2, 3, ..., there exist A1 := Ai(x,y),
Ay := Ay(x,y) > 0 such that for all n €,
(1.3) [eal@,y)] < Arg"™ Y,
(13@) |Cn+1($, y) - Cn(l', y)| < Azqn%(x—y)‘
ProoF. — By definition (1.2a) we have
—n(z—y) _ q
cn(2,9)g = H ek
=1
which is then bounded by a positive function Ay := Aj(x,y) since it converges to

(7" ¢)oc/(¢'7Y;¢)oo when n — 4o00. Thus we have proved (1.3). As to (1.3a), it
suffices to take Ay 1= 24;(z,y).[]
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Proposition 1.2. If ¢-Newton’s series (1.1) converges at x¢ # 1,2,---, then it
converges for every x such that Rx > Rxy.

Proor. — By (1.2) and (1.2a), we may rewrite series (1.1) as :;:6 bn(xo )en(x, z0).

Since the series > <, bn(2g) is convergent, so, by du Bois-REYMOND's test (cf. [Ge,
p. 126] or [Kn, p. 315]), it suffices to prove the convergence of the series

4+ oo

> lenta(e,zo) = cal,20)]

n=0

in the half plane ¥z > Rxo. Now, the latter is dominated by the convergent geometric
series Ei—z AgmFe=Re0) i view of (1.3a). []

Therefore, we may define the convergence abscissa of ¢-Newton’s series (1.1) by

o =inf{og | (1.1) converges for every x such that Rz > o¢}.

The following theorem gives a ¢g-analogue of the formulae of CoHEN and PINCHERLE.

Theorem 1.3. Let o be the convergence abscissa of (1.1) and set

log [ Sig(~DPag ()

(1.4) o= lirg_si_lif e ;
I
(1.5) # = limsup .
n—-+oo n].Og q_l

Theno =« ifo >0,ando = if o <O.

Proor. — We shall only consider the o > 0 case and leave the o < 0 case to the
interested reader, who would complete the proof without difficulty on refering to the
counterpart of ordinary Newton’s interpolation series in [Mi, p. 281-283].

We divide the proof in two parts. Suppose that series (1.1) converges at a point g,
where x( is a non positive integer. Let Rag = oy.

For each x € and n > 0, set

Note that
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Using the notations in (1.2), (1.2a) and by Abel’s Identity [Mi, p. 276-277], we may
write A\p(z) — Ai(2), n > 1 >0, as follows :

7

(1.6) Y be(zo)er(z,20) = > _(er-1(x,20) = ex(w, z0))pr(o)

k=l k

~

— cia(@, w0 )pa(wo) + en(®, w0 ) pint1(wo),

(1.7) Z br(xo)er(x,x9) = (ex(x,20) — chyr(a,20))Ap(20)

3

~

— ci(m, o) Ni—1 (o) + gz, o) An(0),
where ¢y € and xg # 1,2,3,---.
(i) We prove that if o > 0, then o < 0¢; and consequently that a < o, if o > 0.
Since (1.4) can be written as

log [\, (0)]

o = limsup -

n—too nloggq~

Y

it is then sufficent (c¢f. [Mi, p. 277-278]) to prove

(1.8) lir_i{l q"7°A,(0) = 0.
By hypothesis, the series > b,(xg) converges, and hence given ¢ > 0, we have

[ € such that |un(xo)] < e if n > 1. Thus we deduce from (1.6) and (1.3a) that for
Rr < gg,

An(2)] < [Ni(2)] + Aze ( Y gtRemee) g gl(Remee) q"@‘“’—”o))
k=Il+1

(n+1)(Rz—0o0) __ ql(%x—ao)

(1.9)

<A 24
— | l($)| —I_ 2¢& q%x_go _ 1

Noting that lim, 4. ¢"(70~%%) = 0, therefore, if we multiply (1.9) by ¢"(7o—%=)
and let first n — 400, and then ¢ — 0, we get then

lim sup q"(ao_%x)/\n(x) =0.

n—-+4oo
which yields clearly (1.8) by setting « = 0.

(ii) Without the loss of generality, we suppose that « is finite. We prove that series
(1.1) converges at Rx = ¢ + « for any ¢ > 0. This implies that o« > 0.
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Let Re = o + ¢ with ¢ > 0. It suffices to prove that the partial sum A, (x) of (1.1)
converges when n — +00.
To prove this, setting g = 0 and [ = 1 in (1.7) we have

7

Aal) = 3 (ex(2,0) — casa(@, 0)A(0) + (1 = er(w,0)A0(0) = eypr (2, 0), (0).

Since « is finite, it follows from (1.4) that for sufficiently large n, we have

(1.10) IAn(0)] < g mlate/2),

Combining (1.3) and (1.10), we have, for sufficiently large n,
lCng1(2, 00, (0)] < Aqgottn/2e,

Since the second member of the above inequality tends to 0 when n — 400, it remains
to prove the convergence of the series E:z(ck(x,O) — cr+1(2,0))A,(0), but this is
obvious in view of (1.3a) and (1.10). ]

Proposition 1.4. Let o be the convergence abscissa of (1.1). If o is finite, then series
(1.1) defines a bounded regular function in every ¢-half plane Rz > o046, where 6 > 0.

Proor. — Let x¢ be a non integral point and Rxg = o9 = o + /2 with 6 > 0. Set
M = sup,,>q{|ptn(20)[}, then M is finite, since series (1.1) with » = z¢ is convergent.
Asin (1.9), it follows from (1.6) with / = 0 and (1.3a) that

(n+1)(Rz—0o0) __ 1

(o)l < fag| + 245 M I
< lao| + 24, M
o 1 — q%w—ao :

where Rz > oo and n > 0. The sum of series (1.1) is then bounded by
lag| + 245 M /(1 — ¢*/?) in the half plane Rz > o + 6. []

In the same manner, we can define the absolute convergence abscissa of a ¢-Newton’s
series (1.1) by

o =inf{og | (1.1) converges absolutely for every « such that Rz > o¢}.

It is obvious that o > ¢. Similarly, we can prove the following
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Theorem 1.5. The absolute convergence abscissa o of (1.1) is given by

n k41
log > g akq_( =)
(1.11) g = limsup - , ifg > 0;
n—-+0co nlogg~
log -1, |arg ()
(1.12) o = limsup , ifo < 0.
nlogq¢=1!
n—-+oco g4

It should mention that there remains a lot to do with ¢-Newton’s series. Some
natural questions are : What condition should a function satisfy in order to be
represented by a ¢-Newton’s series? What is the relation between the convergence
abscissa and the absolute convergence abscissa of a g-Newton’s series 7 Actually, there
exist several g-analogues of Newton’s series (see, for exemple, [Wa]). It should be
interesting to compare these different g-Newton series and study their relations.

2. Some lemmas about the growth of entire functions
We shall first give some definitions about the ¢-exponential growth of entire functions
following Ramis [Ram].

Definition 3. Let be given a non zero real number k. A power series
(2.1) ag + a1z + asx® + agx® + - -

is said to be q-Gevrey of order s = 1/k, if there exist real numbers A, K > 0 such that

(2.2) lan| < K A" g™ 5

Thus formulae (1.11) and (1.12) imply immediately that if the power series (2.1)
is ¢-Gevrey of order one, then the absolute convergence abscissa of the series (1.1) is
finite. The following lemma has been given in [Ram, Lemma 2.2, ii)].

Lemma2.1. Let f(x) = :;:6 anx™ be an entire function. If there exist real numbers
K,k >0, p such that
f(2)] < KezlosleD™tnloglel ppen 2] — 4oo,
then
(n=p)?
lan| < Ke™ = for n>0.

Definition 4. Let f be an entire function. If there exist real numbers k # 0 and p
such that, for a suitably chosen K > 0,

1 log?|z|

(2.3) 1f(z)] < Ke 2 Togg T8l when x| — 400,
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we say that f has g-exponential growth of order k and of finite type p.

REMARK : Comparing the above definition with that in Ramis [Ram, p. 71], we
have changed his ¢~! by ¢. Note also that for the same entire function f(z), there
may exist several pairs of numbers (k, i) satisfying (2.3). The largest k is called the
precise order of q-exponential growth.

The following result has been given in [Ram, Prop. 5.5] and [Wa], but the proof

given below seems new.
Proposition 2.2. The g-exponential function, E,(x), has ¢-exponetial growth of
order 1 and of finite type, more precisely

log2|m|+log|r|
g T2 )

(2.4) [Eq(2/(1 = q))| = O™ =T

when |z| — +o0.

Proor. — Since |E,(z)| < E,(|z|) in view of (0.5), and in particular |E (z)| =
E,(z) for real numbers « > 0, we then need only to consider the growth of the function
E,(z) along the real positive axe. For « € (0, +00), define the function

273 loﬂ +Oo
(2.5) fla) = Ey(x/(1 — q))e7hse =7 JJ(1+¢" /).

It is easy to check that

1 log2 @

flgz) = f(2) = (=25 ¢)oo(—q/7; @)oo ﬁem,

so the function f(x) is somewhat “g-periodic”. Therefore, if we define

H = min]{f(:zj)} and K = max {f(z)},

z€lg,1 z€[g,1]

we should have

0<HC<Sfle) <K for all « > 0.

On the other hand, noticing that

+oco
lir_i{l (14¢"/x)=1,
n=1

we derive from (2.5) that for sufficiently large x,

1 o 2$ og T ° 2m o @
(2.6) SHe SR C By (a)(1 - q)) < 2K e How

2
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which is clearly equivalent to (2.4) for z € (0, +00) by definition. []

Proposition 2.3. Let f(x) be an entire function. If there exist real positive numbers
p, k, K,d >0 and p > 1 such that for |z| € {d,dp,dp?,- -}

o — ool yog [af
|f(z)] < Ke™ *Tosq when |z| — 400,

then f(x) has q-exponential growth of order k and of finite type

log p
2. P= - .
(2.7) W= Toag

Proor. — Let r, = dp™ for n € . By hypothesis, for any x € , there exists an
integer n > 1 such that

rn < x| < rpgr.

Therefore, if |z| is sufficiently large, by the maximum principle of analytic functions
(cf., for exemple, [Ti, p. 165]), we have

tog? |7y, 41|

|f(2)] < Ke~"2rTogq T#1oglra+]

log? |zp|
< ]/—(6_ 3k Tog q +N10g |$p|

log2 || 1
< K'e” ZhTog g T (M~ Tlogq) 108 |I|7

. . _log?p
where K' = Ke 2187, []

Now we formulate a sufficient condition for the absolute convergence abscissa of
(1.1) to be finite in terms of the ¢-exponential growth of functions.

Proposition 2.4. Let ¢ be the absolute convergence abscissa of series (1.1). If the

entire funcion f(x) = :;:6 anx™ has g-exponential growth of order 1 and of finite
type p, then

_ 1
(2'8) o<+ §

Proor. — By hypothesis and (2.3) we have

le] 2 T
|f(2)] < K™% Siitilog o] when  |z] — 4o0.

Applying Lemma 2.1 with £ = —1/log ¢ yields that there exists ' > 0 such that

(n—u)?

lan| < Kqg— 2
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We then get (2.8) from Theorem 1.5. []

In order to illustrate the above proposition, we end this section with the following
example. Consider the ¢-Newton’s interpolation series associated to the g-exponential
function E(z) :

22 Sl

By Proposition 2.2, we have

log z |

[By()] = O(e™ B trtoslel) (1] foo),

where = 1 — log (1 — ¢q). Therefore, in view of (2.8), the absolute convergence
abscissa of (2.9) is less than or equal to 1 —log, (1 — ¢).

3. ¢-Stirling function of second kind
By definition 1 and (0.8), it is readily seen that the ¢—Stirling functions satisfy the
following recurrence :

Sela+1,k+1) = ¢"Sy(a, k) + [k + 1)S,(a, k + 1),

where o € and k > 1.
The first four values of ¢—Stirling functions are as follows :

Sq(a,0) = 640,

Sq(a,1) =1,

Sy(e,2) =(1+¢)* 7 =1,

Sqla,3) = 1q«1+9+9) (149" + )

For convenience, we set [0]* = 64,0 in what follows.

Let us introduce for a € , |z| < 1/(1 — ¢) the generalized ¢-Stirling “polynomials”

(3.1) flasa) = t,

the radius of convergence of the series being 1/(1 — ¢).
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Proposition 3.1. For|z| < 1/(1 — ¢) and o € we have

+oco
(3.2) fla,z) =" Sy(an)z".

Proor. — This follows by comparing the coefficients of @* of both sides in (3.2)
and then the definition of ¢-Stirling functions (0.8). []

Corollary 3.2. Fora €, |x| < 1 we have

k
(33) > [msien-we w=o.
=0
= Syla )RR L
34 = (T —;w M

Proor. — Multiplying both sides of (3.2) by e (x) yields

+oco
eq() ZSq(a,k)xk

which is equivalent to (3.3) by identifying the coefficients of #*. Next, note first that
the series on the right side of (3.4) is convergent for |x| < 1. By the ¢-binomial formula
(0.4), for || < 1 we have

Substituting this into (3.4) and extracting the coefficients of z* of both sides, we see
that (3.4) is equivalent to (3.3). []

REMARK : If x = 1, Proposition 3.1 reduces to

i 1
(3.5) kzzo Sy(a, k) )
Note further that if @ € and ¢ = 1, the left-hand side of (3.5) is actually the Bell
numbers and (3.5) reduces to Dobinski’s formula (¢f., [Co, p. 45]). In the case of o € ,
Proposition 3.2 has been proved in [Ze] as a g-analogue of Touchard’s formula refining
Dobinski’s formula. Therefore, as suggested by the referer, (3.5) could be denoted as
g-Bell numbers.
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Corollary 3.3. For all « € , the function f(«,x) is an entire function of x.

ProoF. — Proposition 3.1 shows that the function f(«,x) is analytic in the disc
|z| < 1/(1 — ¢). Therefore, in order to prove the analyticity of f(«,z) in the whole
plane, it suffices to do this for the right-hand side of (3.2). Indeed, for any n € , we

may write

wrez(1‘qk)a=<1—qra§fvﬂy(?)¢k+Ruam (k> 1),

J

J=0

where, by Taylor’s formula,

en—l—l 1-6 kxa—n—1 kntk
n+1> (1—6g") q

(k) = (1= 07

for some 6 € (0, 1). Set

- b = n

and write

R <
(3.7) fla,z) = ey ;; ik Lo(z) + Ja(2).

Note that for 0 < § < 1 and k > 1, we have 1 > 1 —0¢* > 1—¢* > 1 — ¢. Let
Ty = max {(1 —q)%, 1}, a constant independent of &k and n, then

‘(1 . eqk)oz—n—l‘ < To(l . qk)—n—l‘

It follows that

k n+l
(3.8) |meﬂszul—w”“(1f¢)

(o) s

which implies the convergence of the series >, o R(k,n)a* /[k]! for x| < 1/¢"TH(1—q).
Besides, the functions 1/¢,(x), e,(¢’z)/e,(z) (j € ) are clearly regular for all = € ,
so I,(z) and J,(x) are both analytic in the disc |z] < 1/¢"T(1 — q) for every n € ,
which implies the analyticity of f(«,z) in the whole plane. []

Theorem 3.4. If Ra > —1, then f(«,x) has g-exponential growth of order 1 and of
type

3
(3.9) p= 5 +log,(1—q).
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Proor. — In view of (3.7) we have

(3.10) |[f(a; )] < [Ln(2)] + [Tul2)].

Let us first estimate |I,,(x)|. By Stirling’s formula about Gamma function (cf., [Mi,
p. 254]), we have

‘ (a)‘ = O(n_%a_l) when n — +o00.

n

Hence, for Ra > —1, there exists a constant Ky > 0 such that

(3.11) ‘(O‘N <K, Vne.
n
On the other hand, by (0.5) we have

eq(qu)

eq(“’)
It then follows from (3.6) and (3.11) that
eq(qu)

(3.12) ()] < i (Z) eq(@)

k=1
Next, we shall estimate |.J,(«)| on the circles :

=1 -1 =) (1= (1 =" ") < Ey(Ja]).

<nKiE,(|z]).

1
(3.13) |z =r, = §q_"_1.

Applying (3.11) to (3.8) implies that there exists a constant K5 > 0, independent of
k and n, such that

qk n+1
|R(k,n)| < K (1 k) (k>1).
Noting also that 1/|e (z)| = |E4(—2z)| < E4(|x]), therefore, it follows from (3.6) that

K +oo n+1
B e € |Z T ‘nﬂ<Kquu/z)(l—q>—"—1Eq<rn>,

since |¢"T1 x| = 1/2 by (3.13). Combining (3.12) and (3.14) yields that for |z]| = r,,,

(3.15) [fla2)] < (nKy + Ko Ey(1/2)(1 = ¢)7" ") Ey(ra)-
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Now, by (2.4), there exists a constant C > 0 such that

(3.16) |E,(2)] < Ce—l%%ﬂé—logq(l—q))loglxl
Note also that for sufficiently large n,
(317) n < (1 — q)_n_l — ez(logq(l_Q))log rn‘

It then follows from (3.15), (3.16) and (3.17) that for sufficiently large n and |z| = ry,
we have

log? |z

o 2)] < K~ Fosh+(hlos, (=) o Is]

The theorem follows then according to Proposition 2.3 with p = ¢~ 1.[]
Corollary 3.5. If Ra > —1, then the series

+oco
(3.18) > Sylan)z]n

converges absolutely in the half plane Rz > 1+ 2log (1 — ¢).

Proor. — It is easy to see that if Ra > —1, the series

4+ oo

Z[n]lsq(a, n)x"

n=0

represents an entire function having a g-exponential growth of order 1 and of finite

type (% +2log,(1—g)). Hence, by Proposition 2.4 and noting that [z], = [n]! [(H'i)_l]

Y

the proof is complete. []

In the rest of this section we shall study the validity of (0.10), s.e., determine the
sum of series (3.18). The following lemma is classical (¢f., [Ge, p.144]).

Lemma 3.6. Let f > 0,0 < n < w. Let f(x) be an analytic function in the half plane
Rx > 0. Assume that f(f +n) =0 for alln € and that there exists A > 0 satisfying

|f(o+ rei9)| < Ae (r — +00),

for all 6 € [—m /2,7 /2]. Then, the function f is identically null.
Theorem 3.7. If Ra > —1, then we have for ®z > 1 + 2log, (1 —q)

+oco
(3.19) [2]* =) Sy(a,n)[a]n.
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Proor. — In view of Proposition 1.4 and Corollary 3.5, we see that if Ra > —1,
series (3.15) represents a bounded function in every é-half plane
?R:I;ZI—I—Qlogq(l—q)—l-(S, o> 0.
Therefore, the difference

+oco
(3.20) [2]* =Y Sy(a,n)[a]n

is bounded in every é-half plane. On the other hand, by (3.3) function (3.20) takes
value zero at every real integral point 2 € . The theorem follows then by Lemma 3.6. []

Comparing (3.19) with its counterpart for ¢ = 1 [BH1], it is reasonable to conjecture
that (0.10) has convergence abscissa zero if Ra > —1. By (1.3) or (1.4) this would be
proved if the following identity

n+1

N (1) Sylan)nllg (T =0(g™N) (N = +o0)
1s true.

4. ¢g-Eulerian function
By (0.9) of Defintion 2, it is easy to verify that the ¢-Eulerian functions satisfy the
following recurrence :

Afa+1,s)=[s+1A(a,s) + ¢°la+1—s]A,(a,s — 1),

where o € and s > 1.
The first four g-Eulerian functions are
Aq(Oé, 0) = 601,07
Agla, 1) = [2]% = o + 1],
o o a+1
Ayf,2) =3 — o+ 12+ | .

Ayfan) = 7 o+ 1B +a|* T 2o -7 1.

Let us introduce for R > —1, |¢| < 1 the generalized ¢-Eulerian “polynomials”

(T @)oo ™
(4.1) Pa(x;q) = mZ[nH]“w",

n=0

the radius of convergence of the series being obviously 1 since lim, .1 {/|[n + 1]%| =

1.
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Lemma 4.1. For Ra > —1 and |z| < 1, the following identity holds

+oco
(4.2) P.(z;q9) = ZAq(oz,s)zs.

Proor. — By Definition 2, we have for |z| < 1

+oo +oo Ta+1 o +oo ‘
(4.3) ZAqm,s)zs:Z(—l)l[ . }q@zl-zmuaza

: [2 -
1=0 7=0

the two series of the second member being both convergent in the open dise |z| < 1.
By the ¢-binomial formula (0.4), we have for |z| < 1

S [“fl}q@)xi:fw(mmy: (i)

i=0 ! — (G (2¢*T @)oo
The proof is thus complete by putting this into (4.3). []

Proposition 4.2. We have for« € andn >0

7

(4.4) n+1]° :;; [azk}Aq(a,n—k),

(4.5) > Aga k)= (-1 [Z] T — k4 1),

Proor. — By Lemma 4.1, we have, for Ra > —1 and |z| < 1,

(qa—l—lx;q)oo +oo \ + o0 . .
(l" ) § Aq(Oé,S)l' = § []—I_l] L7y
2 — j=0
and also
1 +OOA ( ) s (qx;Q)oo +Oo[~_|_1]oz J
g o, 8’ = ————— g 9 zt.
1—2 — 4 (¢°t12; ¢)oo =0

We obtain (4.4) and (4.5) for Ra > —1 by identifying respectively the coefficients of
2™ in the above two identities. Finally, the restriction Ra > —1 could be released to

a € by analytic continuation. []
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Proposition 4.3. For Ra > —1, RB >0, z € and |z| < 1, we have
= Patng(rig) 2" S o 6 \n
(4.6) o R =Y 1% exp([n + 1)72)a

= (T Qatnprr n!

Proor. — By (0.2) and Lemma 4.1, the left side of (4.6) equals, after substitution
of (4.2),

+ o0 P N ﬁ T q on + o0
PP Z Z jatnb i,
= (= q)a+nﬁ+1 o :

which proves immediately (4.6) after an exchange of the order of summation. []

We now come to the main result of this section.

Theorem 4.4. We have
(4.7) (x+1) ZA r,8) for Kr > —1.

Proor. — Observe that for |z| < 1

Gid)oe  _ 6Dx 4
(2"t @)oo (qu’“’“;Q)oo(1 )

So, by Lemma 4.1 we have, for |z] < 1,

+oco
(4.8) ;Aq(:p,s)zs - (Z(qq_Hq (1 +Z FH1E =[] = )

On the other hand, since the function (z¢; q)oo/(zq“'l; ¢)oo 1s analytic for z € such
that

|zq| < 1, ‘qu"”‘ <1,

it is then regular at z = 1 if Re > —1.
Furthermore, note that

lim /][ +1]* = []*l = ¢ (< 1),
j—Foo
hence the convergence radius of the power series > 177 ([7 + 1]* — [1]*) 2/ is equal to

q¢~! (> 1). Therefore, the function defined by (4. 8) is actually regular at the point
z = 1. Finally, since

4+ oo

DY [ = lim [+ 1 =(1-¢g)",

— 0
j=0 ’
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we obtain (4.7) by putting z = 1 in (4.8) and referring to (0.3). []

REMARK : When ¢ — 17, formula (4.7) formally reduces to

+oco s

Mat+1) =Y S (—1)(s +1—j) (“’j“) (Re > —1),

$=0 3=0

which has been respectively established by BuTzer and Hauss [Bu-Ha] and Zuana
[Zh].

The following proposition gives a relation between the ¢—Stirling and the
g—Eulerian functions.

Proposition 4.5. Fora €, |¢| < 1 we have

+OOS

q @ b)[k]tet :io[k]%k:—( 1 ’Q)OOZA (o, )zt
Vit k=0 (#30)ee 12

bl

=0
Proor. — It follows immediately from Lemma 4.1 and Corollary 3.2. []

If @« = n €, the above formula reduces to the ¢-Frobenius formula (see [Gal) :

n 1.k +oco N des o+1,majo
(4.9) $ Sal DIt NSy Luoee, AT

— (51?; Q)k+1 — (9‘?; Q)n+1
k=0 k=0

Proposition 4.6. Fora €, |¢| < 1 we have

n+1
(4.10) Aglayn) = (1)1 (—1)F [nisz] RS (e, ).

(4.11) S, (ayn) = — i g (kD) [O‘ —k- 1] Agla, k).

! —
[n]! P a—n

Proor. — By Proposition 4.5 and the ¢g-binomial formula (0.4), we have for |z| < 1

3y b +§Oo: 03 0)0 g o it
a, k) = — S, (a, lx
1o k—a.

= E Sy(a, k)[k]lz" E " %an (q‘q’)lq)l(xqa"i'l)l.

Formula (4.10) follows then by equating the coeflicients of «™ of the above identity.
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Next, by (0.8) and (4.4), we have

Syla.n) = % -1t [Z] AR

]! =~
- ﬁ k;(_1)"—k [Z] g("2") g [O‘ ;r Z] Aglak—1=1)
B PR T | T

We can evaluate the second summation by the ¢-Chu-Vandermonde formula (see

[GR, p. 236]) and get

S [l T e [

k=j J n—J
Substituting this in the above identity and rescaling j — 1 to j yield (4.11). []

We close this paper by pointing out that it is possible to generalize the formulae
of this section to the multiple index’s Eulerian functions as one did for the multiple
index’s Eulerian numbers (see [Raw] and [FZ]). For exemple, we can generalize (4.6)
in the following manner.

Let x = (x1,%2,...,2,) be a sequence of complex numbers. Define the multiple
q-Eulerian functions A, (x, s) by

Ll

_ PV T () o [s o —1
w12 Ay = Y| T
I=0 k=1
Theorem 4.7. If Rz; > -1 (: =1,2,...,m) and R(zy + -+ + x,,) > —1, then we
have

Ly(ar +ag+ - +am+1)

(413) Tyl (e £ 1 Tylen 71) 2 i)

ProoF. — By definition (4.12) and the ¢-binomial formula, we have

+oo +co +oo m
|
ZAq(X,S)ZS :Z(_l)l[xl + ;I—:L‘ + ]q(é)ZlZH |:8—|-$k:|23
S
s=0 =0 s=0 k=1
_ (% ¢)oc = ﬁ s+ k]
- (anm-l-...—l—xm-l-l;q)oo n ©

_|_
B (2¢; ¢) 0 f
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As in the proof of Theorem 4.4, the above series defines a function which is regular

at z = 1. So putting z = 1 in the above identity yields

ioAq(X?S) _ (4 0)os ﬁ (477 @)oo

(qx1+...+xm+1;q)oo P (Q;Q)oo

which is clearly equivalent to (4.13). []
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