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On the Asymptotic Equivalence
of Circulant and Toeplitz Matrices

Zhihui Zhu and Michael B. Wakin

Abstract—Any sequence of uniformly bounded N x N Her-
mitian Toeplitz matrices { H } is asymptotically equivalent to a
certain sequence of N x N circulant matrices {Cy } derived from
the Toeplitz matrices in the sense that | Hy — Cyn||, = o(V/N)
as N — oo. This implies that certain collective behaviors of the
eigenvalues of each Toeplitz matrix are reflected in those of the
corresponding circulant matrix and supports the utilization of
the computationally efficient fast Fourier transform (instead of
the Karhunen-Loéve transform) in applications like coding and
filtering. In this paper, we study the asymptotic performance of
the individual eigenvalue estimates. We show that the asymptotic
equivalence of the circulant and Toeplitz matrices implies the
individual asymptotic convergence of the eigenvalues for certain
types of Toeplitz matrices. We also show that these estimates
asymptotically approximate the largest and smallest eigenvalues
for more general classes of Toeplitz matrices.
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I. INTRODUCTION

A. Szegd’s Theorem

Toeplitz matrices are of considerable interest in statistical
signal processing and information theory [1-5]. An N x N
Toeplitz matrix H has the form'

WO R[] A2 BN 1)
Wil A0 k=]

Hy=| &2 k1] hlo]
BN 1] T h

or Hy[m,n] = hjm —n];m,n € [N]:={0,1,...,N — 1}.
The covariance matrix of a discrete-time wide-sense stationary
(WSS) random process is an example of such a matrix.
Throughout this paper, we consider H that is Hermitian,
i.e., H = Hy, and we suppose that the eigenvalues of Hy
are denoted and arranged as A\g(Hy) > -+ > Ay_1(HnN).
Here the Hermitian transpose of a matrix A is denoted by A7 .
Szegd’s theorem [1] describes the collective asymptotic
behavior (as N — oo) of the eigenvalues of a sequence of
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'Through the paper, finite-dimensional vectors and matrices are indicated
by bold characters and we index such vectors and matrices beginning at 0.

Hermitian Toeplitz matrices {Hy} by defining a function

h(f) € L?([0,1]) with Fourier series’
1
h[k] :/ h(f)e 32 R qf k€ 7,
0

a(f)= > hlkle?™ feo,1].

k=—o00

Usually h(f) is referred to as the symbol or generating
function for the N x N Toeplitz matrices {H }.
Suppose h € L>°([0, 1]). Szeg§’s theorem [1] states that

1 N-1 1
fim - S0 O (HY) = [ oG )
1=0 0

N—oco N

where 9 is any function continuous on the range of h. As one
example, choosing ¥(x) = x yields

1

N-1 1
Jim = ;Az(Hw): | (D

In words, this says that as N — oo, the average eigenvalue of
Hy converges to the average value of the symbol A(f) that
generates H . As a second example, suppose A(f) > 0 (and
thus \;(Hy) > 0 for all [ € [N] and N € N) and let ¥ be the
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log function. Then Szeg6’s theorem indicates that

1
lim 1 log (det (Hy)) = / log (h(f)) df.
N—oo N 0

This relates the determinant of the Toeplitz matrix to its
symbol.

Szegd’s theorem has been widely used in the areas of
signal processing, communications, and information theory.
A paper and review by Gray [2,7] serve as a remarkable
elementary introduction in the engineering literature and offer
a simplified proof of Szeg®’s original theorem. The result has
also been extended in several ways. For example, the Avram-
Parter theorem [8,9], a generalization of Szegd’s theorem,
relates the collective asymptotic behavior of the singular values
of a general (non-Hermitian) Toeplitz matrix to the absolute
value of its symbol, i.e., |h(f)|. Tyrtyshnikov [10] proved that
Szegd’s theorem holds if ~(f) € R and h(f) € L?([0,1]), and
Zamarashkin and Tyrtyshnikov [11] further extended Szegd’s

2This can also be interpreted using the discrete-time Fourier transform
(DTFT). That is, we can define h(f) = 37> __ hlkle 727/ = h(1 - f).
However, it is more common to view h as the Fourier series of the symbol
h; see [1,6].



theorem to the case when h(f) € R and h(f) € L'([0,1]).
Sakrison [12] extended Szegd’s theorem to high dimensions.
Gazzah et al. [13] and Gutiérrez-Gutiérrez and Crespo [14]
extended Gray’s results on Toeplitz and circulant matrices
to block Toeplitz and block circulant matrices and derived
Szeg&’s theorem for block Toeplitz matrices.

Most relevant to our work, Bogoya et al. [15] studied the
individual asymptotic behavior of the eigenvalues of Toeplitz
matrices by interpreting Szeg6’s theorem in probabilistic lan-
guage. In the case that the range of h is connected, Bogoya et
al. related the eigenvalues to the values obtained by sampling

the symbol A(f) uniformly in frequency on [0, 1].

B. Motivation

Despite the power of Szegd’s theorem, in many scenarios
(such as certain coding and filtering applications [2, 3]), one
may only have access to Hy and not h. In such cases, it
is still desirable to have practical and efficiently computable
estimates of individual eigenvalues of H . We elaborate on
two example applications below.

i. Estimating the condition number of a positive-definite
Toeplitz matrix. The linear system Hyy = b arises naturally
in many signal processing and estimation problems such as
linear prediction [4,5]. The condition number «(H ) of the
Toeplitz matrix H  is important when solving such systems.
For example, the speed of solving such linear systems via the
widely used conjugate gradient method is determined by the
condition number: the larger x(Hy), the slower convergence
of the algorithm. In case of large x(Hy), preconditioning
can be applied to ensure fast convergence. Thus estimating
the smallest and largest eigenvalues of a symmetric positive-
definite Toeplitz matrix (such as the covariance matrix of a
stationary random process) is of considerable interest [16, 17].

7t. Spectrum sensing algorithm for cognitive radio.
Spectrum sensing is a fundamental task in cognitive ratio,
which aims to best utilize the available spectrum by identifying
unoccupied bands [18-20]. Zeng and Ling [20] have proposed
spectrum sensing methods for cognitive radio based on the
eigenvalues of a Toeplitz covariance matrix. These eigenvalue-
based algorithms overcome the noise uncertainty problem
which exists in alternative methods based on energy detection.

Aside from the above applications, approximate and effi-
ciently computable eigenvalue estimates can also be used as the
starting point for numerical algorithms that iteratively compute
eigenvalues with high precision.

C. Contributions
In this paper, we consider estimates for the eigenvalues of a
Toeplitz matrix that are obtained through a two-step process:
1) Transform the Toeplitz matrix into a circulant matrix
using a certain procedure described below.
2) Compute the eigenvalues of the circulant matrix.
Both of these steps can be performed efficiently; in particular,
the eigenvalues of an IV x IV circulant matrix can be computed

in O(Nlog N) time® using the fast Fourier transform (FFT).
The individual eigenvalues of the circulant matrix approximate
those of the Toeplitz matrix. We study the quality of this
approximation.

An N x N circulant matrix C'y is a special Toeplitz matrix
of the form

c[0] c[1] c[2] ¢[N —1]
c[N —1] c[0] c[1]
Cy=| c[N—=2] ¢[N-1] ([0]
c[1] c[0]

Circulant matrices arise naturally in applications involving
the discrete Fourier transform (DFT) [3]; in particular, any
circulant matrix can be unitarily diagonalized using the DFT
matrix. Circulant matrices offer a nontrivial but simple set
of objects that can be used for problems involving Toeplitz
matrices. For example, the product Hyx can be computed in
O(N log N) time by embedding H y into a (2N—1)x(2N—1)
circulant matrix and using the FFT to perform matrix-vector
multiplication. Also Gray [2,7] showed that Toeplitz and
circulant matrices are asymptotically equivalent in a certain
sense; this implies that their eigenvalues have similar collective
behavior. See Section II for formal definitions. Finally, we note
that circulant matrices have been used as preconditioners [21,
22] of Toeplitz matrices in iterative methods for solving linear
systems of the form Hyy = b.

We consider estimates for the eigenvalues of a Toeplitz
matrix obtained from a well-constructed circulant matrix. The
eigenvalues of the circulant matrix can be computed efficiently
without constructing the whole matrix; one merely applies the
FFT to the first row of the matrix. We do not provide new
circulant approximations to Toeplitz matrices in this paper;
rather we sharpen the analysis on the asymptotic equivalence of
Toeplitz and certain circulant matrices [2, 3, 7] by establishing
results in terms of individual eigenvalues rather than collective
behavior. To the best of our knowledge, this is the first work
that provides guarantees for asymptotic equivalence in terms
of individual eigenvalues.

D. Circulant Approximations to H

We consider the following circulant approximations that
have been widely used in information theory and applied
mathematics.

1) Cn: Bogoya et al. [15] proved that the samples of the
symbol h are the main asymptotic terms of the eigenvalues
of the Toeplitz matrix Hy. Given only Hpy, one practical
strategy for estimating the eigenvalues is to first approxi-
mate h by the (N —1)™ partial Fourier sum Sy_;(f) =

kN;f( N-1) h[k]e’?™f*. Then construct a circulant matrix

whose eigenvalues are samples of Sy_1(f), i.e., SN_l(%).

We let Cy denote the corresponding circulant matrix, whose

3We say g1(N) = O(g2(N)) if and only if there exist a positive real
number ¢ and M € N such that g1 (N) < tga(N) for all N > M.



top row (¢[0],¢[1],...,¢[N — 1]) can be obtained as
1 2 ,
5[]{/‘] — N SN_l(ﬂ)eJQ-rrkn/N

h[k/]ejQTr(k—i-k',)n/N

N— N-1 1
) h[k/] (Z Ne]27r(k+k )TL/N)

n=0
k=0,

_ [ o],
—{ hl—k]+h[N —k], k=1,2,...,N—1,

where the last line utilizes the fact

N-1
Z lejgﬂ(k_;,_k’)n/N N 1, mod(k + k‘l,N) =0,
— N 1 0, otherwise.

2) CAZ'N:th Following the same strategy, we first compute the
(|%52])" partial Fourier sum

2
h[k]ei? Ik,

ol

Let C ~ denote the N x N circulant matrix whose eigenvalues
are samples of SLN—IJ (f), ie, SLN 1J( ). With simple
2

N —1]) of Cy

Sjaqa (f) =

manipulations, the top row (¢[0],¢[1],...

is given by
h[-k],  0<k<|[¥F],
k= nN -k, [YE]<k<N,
0, k=N/2,
when N is even, and
_ [ b=k, 0<k<[NH
a‘“]{hw—k}, [ <R N,

when N is odd.

Strang [21] first employed such circulant matrices as precon-
ditioners to speed up the convergence of iterative methods for
solving Toeplitz linear systems. This approach is quite simple.
The underlying idea is that the sequence h[k] usually decays
quickly as k grows large, and thus we keep the largest part
of the Toeplitz matrix and fill in the remaining part to form a
circulant approximation.

3) Cn: In the Fourier analysis literature, it is known that
Cesaro sum has rather better convergence than the partial
Fourier sum [23]. The N'" Cesaro sum is defined as

Sno Snlf)

on(f) = N

We use C'n to denote the N x N circulant matrix whose
eigenvalues are samples of oy (f), i.e., on (% ). The top row

—1]) of Cy can be obtained as follows
L)ejzﬂM/N
N

N-1 ., N-1 =n

1 1 N
_ N N Z Z h[k/]e_ﬂ I(k+k")/N
=0 n=0 k'=—n

O'N(

1 N-1 n N-1 1
_ 2wl (k+k")/N
-3 55 (w3 o)
n=0 k'=—n =0
1
— (V= K)R[=K] + KR[N — K]).

Pearl [3] first analyzed such a circulant approximation and
its applications in coding and filtering. The same circulant
approximation (referred to as an optimal preconditioner) was
also proposed by Chan [22]. The optimal preconditioner is the
solution to the following optimization problem

minimize |Cny — Hy||F

over all N x N circulant matrices. One can verify that Cy is
the solution to the above problem.

E. Main Results
Let {\ (Cn)}iepn denote the eigenvalues of the circulant

matrix Cy for all Cn € CN'N,6'N76N . Let \;(Cn) be

permuted that such that \,)(Cn) > A,1)(Cn) > -+ >
Ap(n—1)(Cn). In this paper, we establish the following results.

Theorem L.1. Suppose that the sequence hlk] is absolutely
summable. Then

lim max |)\l Hy) —
N—ocole[N

A (Cn)| =0, )

for all Cy € {C~'N,CA'N,6N}.

Theorem 1.1 states that the individual asymptotic conver-
gence of the eigenvalues between the Toeplitz matrices H

and circulant matrices Cy € {CN, Cy,Cny } holds as long

as h[k] is absolutely summable. Its proof involves the uniform
convergence of a Fourier series and the fact that the equal
distribution of two sequences implies individual asymptotic
equivalence of two sequences in a certain sense. By utilizing
the Sturmian separation theorem [24], we also provide the
convergence rate for band Toeplitz matrices as follows.

Theorem 1.2. Suppose that h[k] =0 for all k > r, i.e, Hy
is a band Toeplitz matrix when N > r. Then

1

Ay (Cn)| = 0(%) 3)

max‘)\l Hy) - N

l€[N]

as N — oo for all Cy € {GN,éN,éN}.

Utilizing the fact that the Cesaro sum has rather better
convergence than the partial Fourier sum, the following result
establishes a weaker condition on h[k] for the individual



asymptotic convergence of the eigenvalues between H and
Cn.

Theorem 1.3. Suppose that hlk] is square summable and
h € L*°([0,1]) is Riemann integrable and the essential range

of h is |ess infh ess suph i.e., the essential range of h is

connected. Then

lim max [\ (Hy) — A, (Cn)| =0. 4)

N—o00l€[N]

Note that the sequence h[k] being absolutely summable
implies that h[k] is square summable, that h € L°°([0,1]) is
Riemann integrable, and that its range is connected. However,
the converse of this statement does not hold. We provide an
example in Section I'V-B.

Finally, the following result concerns the convergence of
the largest and smallest eigenvalues for more general classes
of Toeplitz matrices.

Theorem Ld4. Suppose that h € L*([0,1]) is Riemann
integrable. Then

1\;E>noc )\0 (HN) = ngnoo )\p(O) (61\/) = €sS sup?z,

Jim Ay (Hy) = lim Aynv-1) (Cn) =essinf .

Laudadio et al. [17] summarized several algorithms to esti-
mate the smallest eigenvalue of a symmetric positive-definite
Toeplitz matrix. These algorithms need O(N?) flops. Com-
puting A (n—_1) (C'n) via the FFT requires O(NN log N) flops,
and at the same time, we are guaranteed that A, (C N) is
asymptotically equivalent to \x_; (Hy) by Theorem L4.

The above results—characterizing the individual asymptotic
convergence of the eigenvalues between Toeplitz and circulant
matrices—serve as complements to the literature on asymptotic
equivalence that has focused on the collective behavior of
the eigenvalues. Before moving on, we briefly review said
literature. In [2,7], Gray showed the asymptotic equivalence*
of {Hy} and {Cx} when the sequence h[k] is absolutely
summable. Pearl showed the asymptotic equivalence of {Hy }
and {C'n} when the sequence h[k] is square summable and
Hy and Cn have bounded eigenvalues for all N € N. The
spectrum of the preconditioned matrix C’X,lH ~ asymptotically
clustering around one was investigated in [10,25-27]. Finally,
as noted previously, Bogoya et al. [15] studied the individual
asymptotic behavior of the eigenvalues of Toeplitz matrices
by interpreting Szegd’s theorem in probabilistic language.
Our estimates for the eigenvalues of a Toeplitz matrix differ
from [15] in that they are only dependent on the entries
of Hy (instead of the symbol h(f)). For our proof, we
utilize the same approach of interpreting Szegd’s theorem in
probabilistic language. However, [15] requires the sequences
of the eigenvalues to be strictly inside the range of h, while our
work covers more general cases where the sequences of the

4We define asymptotically equivalent sequences of matrices in Section II.

eigenvalues can be outside of the range of h as illustrated in
Theorem III.1. See also our remark at the end of Section III-C.

The rest of the paper is organized as follows. Section II
states preliminary results on the asymptotic equivalence of
Toeplitz and circulant matrices. We prove our main results
in Section III. Section IV presents examples to illustrate our
results, and Section V concludes the paper.

II. PRELIMINARIES
A. Asymptotically Equivalent Matrices
We begin with the notion of equal distribution of two real
sequences, using a definition attributed to Weyl [1].

Definition IL1. [1] Assume that the sequences

{{uN,l}le[N]}]ovozl and {{UN,l}le[N]}?zl are absolutely
bounded, i.e., there exist a,b such that a < un; < b
and ¢ < vy; < b for all | € [N] and N € N. Then

{{uN,l}le[N]}]ovozl and {{UN,l}le[N]}?vozl are  equally
distributed if

lim — =0.
m Z (uny) =9 (vnyg)) =0
for every continuous fU.IlCthIl 9 on [a,b].

The asymptotic equivalence of two sequences of matrices is
defined as follows.

Definition I1.2. [2,7] Two sequences of N x N matrices
{An} and { By} (where Ay and By denote N x N matrices)
are said to be asymptotically equivalent if

i AN — Bxllp
N —o00 \/ﬁ

and there exists a constant M < oo such that
ANy, BN, <M, VN eN.

=0

Following the convention in Gray’s monograph [7], we write
Ay ~ By if {Ax} and { By} are asymptotically equivalent.
This kind of asymptotic equivalence is transitive, i.e., if Ay ~
By and By ~ Cly, then Ay ~ Cp. Additional properties
of ~ can be found in [7]. The following result concerns the
asymptotic eigenvalue behavior of asymptotically equivalent
Hermitian matrices.

Theorem IL.3. [7, Theorem 2.4] Let {An} and {Byn}
be asymptotically equivalent sequences of Hermitian
matrices  with eigenvalues  {{\ (An)}ien}R=1 and
{{N (B )by} N=1- Then there exist constants a and b
such that

a<N(An), N (Bny)<b, VI€E[N],NeN.

Let ¥ be any function continuous on [a,b]. We have
N-1

lim 3" (9 (M (Ax) — 9 (A (By)) = 0.

N—o0
=0

In light of this theorem, Definition II.2 can be viewed as the
matrix equivalent of Definition IL.1.



B. Asymptotic Equivalence of Circulant and Toeplitz Matrices

Any circulant matrix C'y is characterized by its top row.

Let ]
ejQTrfO

ej27rf1

€f = S (CNa f S [Oa]-]

i2mf(N—1)

denote a length-INV vector of samples from a discrete-time
complex exponential signal with digital frequency f. Note that

N-1

(Crewv—iyn) [k = Z c[n)e??m(N=O(k+n)/N
n=0
N—1
—I2n(N=D)k/N (Z C[n}ej%rln/N> ’
n=0
which implies that
N—-1
CNe(N*l)/N = (Z C[n]e_]Qﬂln/N> €(N—-1)/N-
n=0
Thus the normalized DFT basis vectors {ﬁel /N}le[N] are

the eigenvectors of any circulant matrix C}, and the corre-
sponding eigenvalues are obtained by taking the DFT of the
first row of Cy. Specifically,

N—-1

Z c[n]eijﬂ'ln/N’

n=0

A (Cn) =

which can be computed efficiently via the FFT. We note that
{\ (CN)}ze[N] are not necessarily arranged in any particular
order; namely, they do not necessarily decrease with .

For a sequence of Toeplitz matrices {Hx} and their re-
spective circulant approximations discussed in Section I-D, the
following result establishes asymptotic equivalence in terms of
the collective behaviors of the eigenvalues. As a reminder, we
assume throughout this paper that each H is Hermitian; this

ensures that all Cy € {CN, Cy, CN} are Hermitian as well.

Lemma IL4. Suppose that the sequence hlk] is square

summable and H ,C'y, CN, C n are absolutely bounded’ for
all N € N. Then

Hy ~Cy ~Cy~Cly,

and
| V-1
]}Enw N ; (I(N(Hn)) = 9(Ni(Cn))) =0,

where 9 is any continuous function on [a,b] and Cy €
{CN7C’N,6N}. Here [a,b] is the smallest interval that

covers all the eigenvalues of Hy, CN, CN, and Cy.

SWe say a matrix A is absolutely bounded if its spectral norm (or largest
singular value) || A||2 is bounded.

Proof. See Appendix A.

A stronger result follows simply from the elementary view
of Weyl’s theory of equal distribution [28], which is pre-
sented in Lemma B.1. As a reminder, we do assume that
the eigenvalues of each Toeplitz matrix are ordered such that
X(Hy) > - > Av_1(Hn).

Lemma ILS. Suppose that the sequence hlk] is square

summable and Hy,Cy,Cx,Cy are absolutely bounded.
Let \(Cy) be permuted that such that X\,)(Cn) >
)\p(l)(CN) > 2> )\ ,1)(CN). Then

lim 72 [\ (Hy))

N—oco N

— (A0 (Cn))| =0

for every funcnon 19 that is continuous on [a,b] and Cy €
{CN,CN,CN}. Here [a,b] is the smallest interval that

covers all the eigenvalues of H CN, CN, and C .

Proof. This result follows simply from Lemmas II.4 and B.1.
|

III. PROOFS OF MAIN THEOREMS

Let essR (-) be the essential range of a function. For any
Q C R, let int (2) be the interior of the set €.

A. Proof of Theorem 1.1

We first provide a strong condition under which the equal
distribution of two sequences is equivalent to individual
asymptotic equivalence.

Theorem IIL1. Assume that the sequences {{un,}ie[n]} =1
and Hon,i e }N 1 are absolutely bounded , i.e., there exist
a', b such that b > uno > uny > -+ > uyn—1 > a and
b/ > UN,0 > UN,1 > e 2> UN,N—1 Z a for all N € N.
Furthermore, suppose there exists a non-constant continuous
function g(x) : [¢,d] — R such that

lim unp = hm uN,0 = max g(x),
N—oco —00 z€|e,d]

lim uy ny_1 = hm un,N—1 = min g(x),
N—oo z€le,d]

and

))dz < 00

for every functlon ¥ that is continuous on [a, b, where [a,b] is
the smallest interval that covers [a’,b'] and the range of g(x).
Then the following are equivalent:

N-1

Jim ; (I(uny) = I(vn,)) = 0 ©)
lim max |uy,; — vy, = 0. 6)
N—o00 IE[N]

Proof (of Theorem III.1). See Appendix B. [ |



If i~L( f) = C is a constant function, then Hy and Cy are
diagonal matrices with all diagonals being C' for all Cy €

{(EN, C*N,éN} and N € N. Thus \; (Hy) = A (Cy) = C
for all [ € [N] and Cy € {éN,éN,éN}. The following

result establishes the range of the eigenvalues of Cy and Hy
for the case when h(f) is not a constant function.

Lemma IIL2. Suppose that h € L>=([0,1]) and h is not
a constant function. Also let \|(Cn) be permuted such that
)\p(O)(CN) > )\p(l)(CN) > 2> )\/)(N—l)(CN)- Then

essinfh < Ay_1(Hy) < Apv-1)(Cn)

and
A p(0)(Cn) < Ao(Hy) < esssup h.

Proof (of Lemma II1.2). We first rewrite A, (61\;) as

5 (Cr) =

1 —j27win
N

= Z N ((N —n)h[—n] + nh[N —n])e

I
=

1 1
N\/T €|/N> \/»el/N>

By definition, Mo(Hy) = maxy|,—1(HNv,v) and
)\Nfl(HN) = min‘|v‘|2:1<HNv7’v>, we obtain

Av—1(Hn) < N(Cn) < Xo(Hy), VL.

For arbitrary v € CV | |lv||2 = 1, we extend v to an infinite
sequence v[n],n € Z by zero-padding. Then

(Hyv,v) = . v*[m) Z_ him — n]v[n]

I
]

where T(f) = SN w[n]ef2 ™ If h(f) is not a constant
function of [0, 1], we conclude

1
essinf h :/ [B(f)|? df - essinf h < (Hyv,v)
0

1
</ [B(f)|? df - esssup h = esssup h.
0

Theorem 1.1 holds trivially when 7L( f) is a constant function
since for this case Hy and C'y have the same eigenvalues for

all Cy € {éN,éN,éN} and N € N. In what follows, we

suppose E( f) is not a constant function. The assumption of
absolute summability of the sequence h[k] indicates that its
DTFT h(f) is continuous on [0, 1], and moreover, its partial
Fourier sum Sy (f) converges uniformly to h(f) on [0,1] as
N — oo [23]. Thus, given € > 0, there exists Ny € N such
that

h(f) = Sn_1(f)| < e

for all f € [0,1] and N > Ny. The Cesaro sum ox(f) also
converges to h(f) uniformly on [0, 1] as N — oc.

Since the eigenvalues of Cy and Cyy are, respectively, the
samples of Sy_1(f) and SLN 1J( ), we conclude that Cy
and Cy are absolutely bounded. Lemma II1.2 implies that C
and H are also absolutely bounded.

We next show limy o max; A (Cny) = maxye g h(f)

for all Cy € {CN, Cy,C N}. The extreme value theorem

states that f(f) must attain a maximum and a minimum each
at least once since h(f) € R is continuous on [0, 1]. Let

fi=arg lrcnaxﬁ(f)

denote any point at which h achieves its maximum value. Also
let

4

ZN = arg min
l€[N]

denote any closest on-grid point to f . For arbitrary € > 0, by
uniform convergence, there exists Ny such that

~(In
)‘TN (Cn)—h (N)
for all N > Ny. Noting that ’TWN —ﬂ < ﬁ and h is
continuous on [0, 1], there exists N; € N so that

-y~ Z\N
h( ) et
when N > Nj. Thus we conclude
Ay (Cn) ~h (f)’ < 2e

for all N > max {Ng, N1}. Since € is arbitrary,

WA (ON) = i, M)

for all Cy € {CN’N,CA’MéN}. Noting that \; (Cy) <
M(Hpy) < maxfe[oyl]ﬁ(f), we obtain

<e€

<e€

Hy) = max h(f).

lim max \; ( max,

N—oo 1



The asymptotic argument for the smallest eigenvalues can be
obtained with a similar approach. It follows from Lemma I1.4
that Hy ~ Cny ~ Cy ~ Cy and from Szegd’s theorem (1)
that

Jim S 0 (H) = o
=0

Finally, the proof of Theorem I.1 is completed by applying
Theorem III.1 with g = h. ]

B. Proof of Theorem 1.2

The proof is given in Appendix C. We outline the main
idea here. Let [Hy]n—, be the (N —r) x (N —r) matrix
obtained by deleting the last r columns and the last r rows of
H . Similar notation holds for [Cy]n .. Note that [H]y
and [Cy]n_, have the same eigenvalues when N > 2r
since [H|y_, is exactly the same as [Cn]|ny_,. Also CA'N
is equivalent to Cxy when N > 2r. We first apply the
Sturmian separation theorem for the Toeplitz and circulant
matrices to obtain a bound on the distance between \;(H y)
and A, (Cy). We then utilize the fact that h(f) is Lipschitz
continuous to guarantee the closeness between )\l(C~’N) and
Ai+-(Cn). Finally, we show \;(Cy) is close to \;(C y) since
the Cesaro sum and partial Fourier sum converge to the same
function in this case. [ |

C. Proof of Theorem 1.3

We first provide another condition (which, informally speak-
ing, is weaker than that in Theorem III.1) under which the
equal distribution of two sequences implies individual asymp-
totic equivalence.

Theorem IIL.3. Assume that b > ung > uny1 > -+ >
UNN—1 = @ and b > vyg > UN1 = -0 2> UNN—1 = Q.
Furthermore, suppose there is a Riemann integrable function
g(x) : [¢,d] — [a,b] such that

un, N, € int(essR(g)), V I € [N],N €N,

lef;:ZMm i [ et

Sor all 9 that are continuous on |a,b]. Then the following are
equivalent:

and

))dx < 0o

| N2

A}igloo ; (un) —I(vny)) = 0; (N
lim max|uy,; —vn,;| = 0. (8)
—o0 1 ’

Proof (of Theorem III.3). See Appendix D.

Ifiﬁ(f) = C is a constant function, then )\ (Hy) =
M (Cy) = C for all I € [N]. Thus Theorem 1.3 holds

trivially. On the other hand, suppose that h o€ L*=([0,1])
is not a constant function and the essential range of h
is {ess inf h, esssup h] It follows from Lemma III.2 that

N (Hy) A (C) €int (R (R)) forall 1 € [N] and N € N.
Using Lemma I1.4 and Szegd’s theorem (see (1)), the fact that
h[k] is square summable together with the fact that Hy,Cy
are absolutely bounded imply

1 ~
i L Z IOuEN) = [ oE)r
and
1 N-1 L
JE&RfZ;WQxHNDfﬂQACNNVZO

for all ¢ that are continuous on {ess inf ﬁ, ess sup ﬁ} Finally,

(4) follows from Theorem III.3 with g = h, uny = N(Hpy)
and vy, = A,;)(Cn). This completes the proof of Theorem
1.3. [ |

Remark. Theorem III.1 requires that g is continuous and that
the extreme values of the sequences asymptotically converge to
the extreme values of g (but meanwhile the extreme values of
the sequences can be outside of the range of g). Theorem III.3
requires the sequences to be strictly inside the range of g.

D. Proof of Theorem 1.4
Our proof of Theorem 1.4 appears in Appendix E. ]

Remark. Theorem 1.4 works only for the circulant matrix Cy
and not C’N or CN This is closely related to the fact that
the partial Cesaro sum has better convergence than the partial
Fourier sum [23].

Remark. Theorem 1.4 only requires h to be bounded and
Riemann integrable, while Theorem 1.3 requires the range of
h to be connected.

IV. SIMULATIONS
In this section, we provide several examples to illustrate our
theory. In the legends of Figures 1-3, we refer to the circulant
approximations C'y, CN, and C as Circulantl, Circulant2,
and Circulant3, respectively.

A. h[k}:W(%)Q,W:i

In our first example, the sequence h[k] is absolutely
summable and the corresponding symbol

_ ! 1=y, 0Sf<W
h(f) =ti(3p) =4 1- 3L 1-W<f<1
0, otherwise



is a triangular signal, which is continuous on [O 1]. Fig-
ure l(a) shows h, Figure 1(b) shows X\ (Hy), A (CN)
)\p(l)(CN) and )\p(l)(CN) for N = 500, and Figure l(c) shows
max;e(n] [N (Hy) — Ay (C)| against the dimension N for
all Cy € {CN, Cy,Cy ¢. As guaranteed by Theorem 1.1, it
can be observed in Figure 1(c) that the individual asymptotic
convergence of eigenvalues holds for all Cw, Cy, and Cy.

B hf] = B

In this case, the sequence h[k] is not absolutely summable
and the symbol

wn={ 3,

is not continuous, but its range is connected. Figure 2(a)
shows A, Figure 2(b) shows N\(Hpy), A l)(CN) Ao(D) (CN)
and A,(Cn) for N = 500, and Figure 2(c) shows
max;e(n] [N (Hn) = A0y (Cn)| against the dimension N
Cy € éN,éN,éN}.
Figure 2(c) that the individual asymptotic convergence of
the eigenvalues holds for Cy-—as guaranteed by The-
orem [.3—but not for CN and CN Figure 2(c) also

for all It is observed from

shows that the errors max;c|y ‘)\l (Hy) — )\,)(z)(CN)‘ and

maxle[N] ‘)\I(HN) —

Ao(l) (CN)‘ converge to the size of the
Gibbs jump (= 0.089).

C h[k] _ sm(i‘/rka) W = 4

In this example, the sequence h[k] is not absolutely
summable and the symbol

an={

is a rectangular window function, which is not contin-
uous and whose range is not connected. Figure 3(a)
shows h, Figure 3(b) shows \;(Hy), A l)(CN) Ao(l) (Cn)
and A\ l)(CN) for N = 2048, and Figure 3(c) shows
max;e [y ‘)\l (Hn) — A (CN)‘ against the dimension N for
all Cy € {CN,CN,C N} Figure 3(c) illustrates that the
individual asymptotic convergence of eigenvalues does not
hold for the circulant matrices Cl, CN, and C . Indeed,
the sequence h[k] does not meet the assumptions in either
Theorem I.1 or Theorem I.3.

Due to the gap (between 0 to 1) in the range of the
window function h, the eigenvalues of Hy and C'n have
different behavior in the transition region. To better illustrate
this, Figures 3(d) and 3(e), respectively, show X\;(Hy) and
Aoy (Cn) for N = 2048. We see that the eigenvalues of the
Toeplitz matrix H y cover the range [0, 1] somewhat uniformly,
while the eigenvalues of the C 'y tend to cluster around 0, 1 /2,
and 1 (there are none near 1/4 or 3/4). The following result

formally explains the transition behavior of the eigenvalues of
Hy.

W<f<1-W,
otherwise,

Lemma IV.1. [6,29,30] Let h{k] = “2C"WE) yyip w —
Fix € € (0, 2) Then there exist constants C1, Coy and Ny such
that the distance between any 2 consecutive eigenvalues of

Hy inside (e,1 — €) is bounded from below by 1nC(Vzlv) and

from above by m?izzv) that is

C1 02
< H
IH(N) = /\ ( ) Al-‘rl( N) In (N)
Jorall e < N\ 1(Hy) < N(Hy) <1—¢€and N > Nj. Also
1
AENI-1 2 5 Z AN

for all N € N.

On the other hand, we have the following result on the
eigenvalues of C'y.

Lemma IV.2. Let h[k] = SmETWR) ity W=
| = N/4,3N/4,

Tk
A (Cn) - 2‘ { ;3 l€[N]andl+# N/4,3N/4,
with o = 0.4 if N is a multiple of 4.
Proof. See Appendix F. [ |

1
1 Then

With more sophisticated analysis, we believe that the above
result could be improved to a ~ 0.45. This is suggested by
Figure 3(e).

Combining Lemmas IV.l1 and IV.2, we conclude that
max;e(n) ’)\Z(HN) - Ap(l)(C’N)‘ approaches ~ 0.2 as N —
oo and N is a multiple of 4. o

Finally, Figure 3(f) plots |Xo(Hx) — Ap0)(Cn)| and
‘)\N,l(HN) - AP(N,l)(éN)‘ against the dimension N. As
can be observed, the largest and smallest eigenvalues of Cy
converge to the largest and smallest eigenvalues of Hy,
respectively. This is as guaranteed by Theorem I.4.

V. CONCLUSIONS

It is well known that any sequence of uniformly bounded
Hermitian Toeplitz matrices is asymptotically equivalent to cer-
tain sequences of circulant matrices derived from the Toeplitz
matrices. We have provided conditions under which the asymp-
totic equivalence of the matrices implies the individual asymp-
totic convergence of the eigenvalues. Our results suggest that
instead of directly computing the eigenvalues of a Toeplitz
matrix, one can compute a fast spectrum approximation using
the FFT. This is long known, but we provide new guarantees
for the asymptotic convergence of the individual eigenvalues.
Some numerical examples have demonstrated the dependence
of the convergence behavior on the properties of the symbol
of the Toeplitz matrix. An interesting question would be
whether it is possible to extend our analysis to general (non-
Hermitian) Toeplitz matrices, along the lines of the Avram-
Parter theorem [8, 9]. In addition, it would also be of interest
to extend our analysis to the asymptotic equivalence of block
Toeplitz and block circulant matrices.
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Fig. 1. (a) Illustration of a continuous symbol ﬁ( f). (b) The eigenvalues of the Toeplitz matrix H  and the circulant approximations C N c v, and Cy,
arranged in decreasing order. Here N = 500. (c) A plot of maxje[N] |)\l Hy) — p(l)(CN)| versus the dimension N for all C € {CN, Cy, CN}
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Fig. 2. (a) Illustration of a discontinuous symbol ﬁ( f). (b) The eigenvalues of the Toeplitz matrix H  and the circulant approximations C N, c v, and Cp,
arranged in decreasing order. Here N = 500. (c) A plot of max;¢ [ |)\Z(HN) — Ap(l)(CN)| versus the dimension N for all C € {éN, éN,éN}.

APPENDIX A Fix ¢ > 0. By assumption that the sequence h[k] is square
PROOF OF LEMMA 11.4 summable, there exists /Ny such that
> hKIP + |R[-K]]® < e
It follows from the definition of Cy that k=No
Thus we have
2 ! H é’ ’
AN ¥ |7 =G4
N—1 v 1 No—1
S ) ) <~ > 2k (Ilkl + n[-#]*)
= > k(1K = AN+ K] + [B[-K] = BN — &) =i
k=1 1 N ( )
LN/2) > 2k (|hlk]* + B[k
+ > k(KPR + p-R) TNE,
k= 25 | +1 1 No—1 N
) <~ 0 2k (|0lKIP + [Bl=KI) +2 Y (Inlk)? + a=#]F)
< 2k (|h[K])* + |h[—K]|* + |h[N — K]|* + |h[k — N]|? k=1 k=No
< 3 2k (W + ALK 4 AN = B plk - NIP) S

2 -

-1
< o (|h[k]|2 + |h[—k]|2) . Wh;{ N > max | No, Nl}. with . N, . >
0T 2k (|h[ 11> + |[h[K]|?) Je. Since e is arbitrary,

b
I
—
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Fig. 3. (a) Illustration of a discontinuous symbol h( f) whose range is not connected. (b) The eigenvalues of the Toeplitz matrix Hp and the circulant
approximations CN, C’N and C , arranged in decreasing order. Here N = 2048. (c) A plot of maxje[N] |>\l Hpy) — p(l)(CN)l versus the dimension

N for all Cn € {C N, c N, C N}- (d) The eigenvalues of the Toeplitz matrix H . (e) The eigenvalues of the circulant matrix Cny, arranged in decreasing
order. (f) A plot of |)\0(HN) = Ap(0) (GN)} and ‘)\N_l(HN) — /\p<N,1)(6N)} versus the dimension V.

we obtain

1 2
lim —HHNfCNH -

N—oco N

Noting that Hy and CN are absolutely bounded by assump-
tion, we conclude Hy ~ CN The proofs of Hy ~ Cy and

Hy ~ Cy follow from the same approach. [ |
APPENDIX B
PROOF OF THEOREM III.1
Set
1
Fy(a) == T {zele,d:g(z) <a}, )

Fun(0) = < # {1 € [V uns < a}

Fyy(a) = %#{l € [N],on; < a}.

Here, (1(E) is the Lebsegue measure of a subset F € R.
Definition IL.1 states that the sequences {{un,i}ie[n]} =1
and {{vn,}ic;n) )=, are asymptotically equally distributed
if
1 Nl
lim — Y (9 (ung) — 9 () =0

N—oco N
=0

for all ¢ that are continuous on [a,b]. Here [a,b] is the
smallest interval that covers the sequences {{un,}ie[n]} -1
and {{on,i}ie(nv}R-1-

Trench [28] strengthens this definition by showing the
following result.

Lemma B.1. [28, Asymptotcially (absolutely) equal distribu-
tion] Assume that b > uno > ung > -+ > UNN—1 = @
and b > vy > VN1 > -+ > UN,N—1 > a. The following are
equivalent:
D) limy oo 2 500" (0 (uny) — 9 (uns)) = 0 for all 9
that are continuous on [a,bl;
2) 11mN—>oo N Z |19 (UNZ) - 19(1)]\{71” =0 fOl’ all v
that are contmuous on [a,b].

Here the sequences {{UN,l}le[N]}JO\?=1 and {{UNJ}[E[N]}%ZI
are said to be absolutely asymptotically equally distributed [28]
if

N-—1
1
R Z; [0 (un) =0 (vn)| =0

for all ¢ that are continuous on [a, b].

Viewing g : [¢,d] — R as a random variable, in probabilistic
language, F, is the cumulative distribution function (CDF)
associated to g. Also F},, and F,, can be viewed as the CDF
of the discrete random variables uy : {0,1,...,N — 1} - R



defined by un(!) = un,; and vy : {0,1,...,N -1} - R
defined by vx(l) = vy, respectively. It is well known that
the CDF of a random variable is right continuous and non-
decreasing. The following result, known as the Portmanteau
Lemma, gives a number of equal descriptions of weak con-
vergence in terms of the CDF and the means of the random
variables.

Lemma B.2. [31, Portmanteau Lemma] The following are
ﬁ(uNl =

equivalent:
. N—1
1) imy oo % D iep f (g
bounded, continuous functions 19
2) imy_yo0 Fuyy () = Fy(a) for every point o at which F,
is continuous.

))dzx, for all

Despite the fact that Fy(«) is right continuous and non-
decreasing everywhere, some stronger results about F, () can
be obtained by utilizing the fact that g is continuous on [c, d].

Lemma B.3. Let F,(«) be defined as in (9). Then F,(«) is
strictly increasing on R(g), i.e., for every a € int(R(g)),
there exists € > 0 such that, for each pair (o, as) satisfying

min g(z) <a—e<a <a<az<a+e< max g(z),
z€[c,d] z€|e,d]
we have

Fy() < Fy(a) < Fy(az).

Proof (of Lemma B.3). Since g(z) : [¢,d] — R is con-
tinuous, there exists e such that (« —e,a+¢) C R(g) for
a € int(R(g)). Let oy be an arbitrary value such that
a—€<a; <aandlet of = 252 € R(g). Noting that
g is continuous, we have

u{xeMﬂwﬂm—au<

Thus, we obtain

o — (1
> 0.
"

Fy(a) — Fy(an) = ﬁ,u {z €le,d]: a1 < g(x) <a}

1
> Eu{xe [e,d] : a1 < g(z) < a}>0.

Similarly, we have Fy(a) < Fy(ag) fora<as <a+e N

We are now ready to prove the main part. First we show
that (6) implies (5). Fix ¢ being some continuous function on
[a,b] and € > 0. The Weierstrass approximation theorem states
that there exists a polynomial p on [a, b] such that

[9(t) — p(t)] <

forall t € [a, b]. Since p is a polynomial, there exists a constant
C such that

Wl ™

Ip(t2) — p(t1)] < Clta —t4]
for any a < t; <ty < b. Also (6) implies that there exists an
Ny € N such that

|UNJ — ’UNJ| < Vie [N]

£
3C’

for all N > Ny. Therefore, we have

[0 (un) = I(vwn)l
<[9(un,1) — pluny)| + [p(uni) — p(on)]
+ |19(’UN1) P(UN1)|
Ci [
+ 3C+
for all [ € [N] and N > Ny. Thus
L V- 1 < | V-l " |
N (uny) (vwa))] < [P(un) — P owy)
1=0 1=0
<e

for all N > Nj. Since € is arbitrary, this implies (5).

Now let us show that (5) implies (6). We prove the statement
(5) = (6) by contradiction. Suppose (6) is not true, i.e., there
exists an increasing sequence {M}}, ; and e; > 0 such that

max |uMk 1 — UMy, l| > 261
le[My]

for all k > 1. Le.t lp = arg max;eas,) |“I.V1k-,,l —.ka_,l| QGnote
any point at which |ups, ;1 — U, 1| achieves its maximum,
which implies |ung, 1, — Va1, | > 2€1. Without loss of gener-
ality, we suppose uaz, 1, < UMy, l» 1-€0 Uy 1, < Uy, 1, — 2€1-

1) Suppose unz, i, > MmaXzeleq g(z), which indicates
UMyl > 2€1 + maxXgeleq g(z). This contradicts the
assumption that limy oo vn,0 = MaX,¢(c q) 9(T).

2) Suppose upy, 1, < MaXzelc,q) 9(z). By assumption that

hm UNN—1 = hm un,N—1 = min g(z),
N— z€[e,d]

there exist kg € N and oy, € int (R(g)) such that

€1
Je < 5

0 < ag —unm,
and Fy is continuous at oy, for all k& > ko. Noting that F,
is right continuous everywhere and strictly increasing at
ay, (which is shown in Lemma B.3), there exist €5, €3 > 0
such that e; < %, F, is continuous at oy, + €2, and

Fy(ak + €2) = Fy(ax) + 3es. (10)

Lemma B.2 indicates that

i Fuw, (@) = Fy(e)

for every point o at which F}; is continuous. Thus there
exist k1 € N, k1 > kg such that

FuMk (Oék) - Eq (Oék)‘ < €3a

an

Fuy, (i + €2) = Fy (o + 62)‘ <es



for all £ > k;. Thus, we have

FuM,c (o +€2) — FUMk (k)
=Fuy, (o + €2) — Fylag + €2) + Fy(ay + €2)
— Fy(ar) + Fylax) — FuM,c (a)

> Fy (0 + €2) = Fyfon) = | Fyln) = Fuy, (o)

— | Py, (v + €2) — Fylcu, + 62)‘

>3€3 — €3 — €3 = €3

for all k£ > kq, where the last line follows from (10) and
(11). Noting that the above equation is equivalent to

1
m# {l € [My), o < upgg < ap + €2} > €3,
we have
1
ﬁk# {l € [Mi],uny 1, < ungg < ap+ e}

1
Zﬁ# {l € [My], o < unryi < g + €2} > e3.
k

Thus, we obtain
0 < ung tu—TesMi] — UMy 1, < Ok + €2 — Upg 1, < €1,
which implies

UMyl — WMyl —[e3 M ]

UMy, L, — UMyl T UMy 1 — UMyl —esMy]
>2€1 — €1 > €.

Now taking ¥(t) = ¢, we obtain
1 M —1
L > 19(unge ) = 9(var, )]
1=0

i
1
Zﬁk Z |19<uMk;l) _ﬁ(UMk,l)l

I=lp—[e3My]
1 &
2o 2 [00unn) = ()|
1=l —[es My, ]
>eze; >0
for all k£ > k;. This contradicts Lemma B.1. ™
APPENDIX C

PROOF OF THEOREM 1.2
We first establish the following useful results.

Lemma C.1. Let ug,uy,...,uny—1 € R be an unordered
sequence of N elements. We decreasingly arrange this se-
quence so that upy = Up1y = -0 = Up(N—1).- LThen for
any r € {1,2...,N — 1}, we have

max max

u — U ’
1< <r te[Nopr—1] PO~ el

< max max |u; — U]
1<r’'<r I€[N—r'—1]

Proof (of Lemma C.1). The proof is straightforward for the
case r = 1. If the sequence is constant, then

max U,y — U = max |u;—u = 0.
le[N—g PO T TelHD) le[N72]| L U
Suppose the sequence is not constant, i.e., there exist at least
l1,l5 € [N] so that U, 7’5 ULy - Let

I' = argmax u,(y — Up(41)
le[N-2]

denote any point at which u,;) — u,q41) achieves its maxi-
mum. Search the sequence {ulﬁ 1eqn) to find wy that is smaller
than w,;y and its index I is closest to p(l). Thus

max {|upr — uprr 41 Uy — wuprr—1 Z max u —U .
{ all [} 2 mas gy
Suppose r > 2. Similarly, the proof for a constant sequence

is obvious. Suppose the sequence is not constant. Let
{I',r'} = arg

max max

u —Uu "y.
12 <r 1g[N—gr—q) P TP

If there are several pairs {l’,r'} have the same values, we
choose the one that v’ has the smallest value. If ' = 1, the
proof is similar to the case 7 = 1. We suppose r’ > 2. Thus
there exist at least 7’ elements that are smaller than up(ry and
only 7’ —1 elements that are greater than 4.,y and smaller
than w,). Search the sequence {u};c|y; to find uy that is
smaller than u,y and its index [" is the 7’-th closest to p(l’).
Without loss of generality, suppose 1" < p(I').
If upr < Up(l'+r')s we have

— >
max |upr — wpr | > Up(rry

— U,(]"4p’
1< <y p(U'+r")

since there is at least one element in {u;, " +1 <1 <" + '}
that is greater than or equal to w, ).

If wpr > w400y, there exists [ < 1" < 2p(1") — 1" such
that w is smaller than or equal to w1,y (otherwise, there
are 7' elements that are greater than u, (., and smaller than
Up(1y)- Also near uypr, there must exist at least one element
that is not smaller than u,;). Then

1SH,,}9>S(T/ max {|’U,l/// —_ ’Z,Ll///+r//| s |ul/// — Uyt — 1t |}

ZUp(1r) = Up(l'4r1)-

This completes the proof. [ |

In words, the largest error between the contiguous elements
of a sequence is not magnified when the sequence is rearranged
in decreasing (or increasing) order.

The following result establishes that the largest error be-
tween two sequences is not magnified when both of the
sequences are rearranged in decreasing (or increasing) order.

Lemma C.2. Let ug,...,uny_1 € R and vg,...,vn_1 € R
be two unordered sequences of N elements. We decreasingly



arrange these sequences so that u,)y > Up(1) = ** " Up(N—1)
and v,y > Vp(1) =+ Vp(N—1)- Then

a — < a -
Jmax Jup) = vp)| < max fu — ol

Proof (of Lemma C.2). Let

r = argmax’up —vp(r)|

re[N—1]

denote any point at which |up(T) — vp(r)| achieves its max-
imum and let I’ be the index of w,(. Without loss of
generality, we Suppose U, (1) > V(). If vy < vp 0y, we have
Uy — Uy Z Up(pry — Up(rr). Otherwise suppose vy > vy,
which implies 7" > 1. Since there are only 7’ elements
in {w};cyy that are greater than () and 7’ elements in
{vi}ie(n that are greater than v, there must exist I such
that u;» > Up(rr) and vy < Vy(rry- Hence

W = Ui Z Up(rr) = Up(r):

Lemma C.3. [24, Sturmian separation theorem] Let Ay be
an N x N Hermitian matrix and let [AN]|n—1 be the (N — 1) X
(N — 1) matrix obtained by deleting the last column and the
last row of An. Also let \g(AN) > -+ > An_1(Ay) and
M([AN]N=1) = -+ > An—2([AN]N—1) respectively denote
the descending eigenvalues of Ay and [An|n—1. Then

M(AN) > N([AN]N=1) = N+1(AN)
forall 0 <[ <N —2.

The above Sturmian separation theorem forms the founda-
tion of the following analysis. We note that Zizler et.al. [32]
utilized the Sturmian separation theorem to prove a refinement
of Szegd’s asymptotic formula in terms of the number of
eigenvalues inside a given interval.

Now we are well equipped to prove Theorem I.2. In _what
follows, we consider N > 2r. Note that in_this case Cy is
equivalent to Cy and the eigenvalues of Cy are the DFT
samples of Sy_1(f) = h(f) = Y_.__, h[k]e?*™/*. Recall
that [Hy]n_ is the (N —r) x (N — r) matrix obtained by
deleting the last 7 columns and the last 7 rows of H . Similar
notation holds for [Cn]n_;- B

Note that [H]y_, is exactly the same as [Cx]ny_, as they
have the same elements when N > 2r. Thus LH _, and
[C’N] ~N—r have the same eigenvalues. Let \;([Cn]|n—r) be
permuted such that

Moy ([CNIN=r) > > Npv—r1y ([Cn]n—r).

We first consider the simple case when r = 1. It follows
from the Sturmian separation theorem that

M(Hy) 2 M([HN]v-1) 2 A (Hy),
Ao (CN) = Aoy ([CnIn-1) = Apa+1)(Cn)

for all 0 <! < N — 2. This implies the following relationship
between \;(Hy) and A,)(Cn)

MN(Hy) SN ([Hylv-1) = )\p(z_l)([éN]Nq)
<Na-1(Cn), VI=1,2,...,N —1,

N(Hy) 2M([Hy]n-1) = Ao ([Cn]n-1)
>X041)(Cn), ¥V1=0,1,...,N =2

12)

which give

‘Al (Hy) —

o ()
Ap(D) (CN)

Ap(1) (51\7) -\ (HN)}
§max{)\p(l,1) (CN'N) = A (éN) )

o (0) e (69}

for all 1 <1 < N — 2. Applying Lemma C.1 with r = 1, we
obtain

= max {)\l (Hy) —

max

1<I<N-2 ’/\l (Hx) = Ay (éN)’
< max A, (CN) = Ap(l41) (CN)

0<I<N-2
< max })\l (C~'N) — 41 (éN) ’

T 0<I<KN-2

Note that E( f) is Lipschitz continuous since it is continuously
differentiable. There exists a Lipschitz constant K such that,
for all f; and f5 in [0, 1],

’E(fl) —E(fz)' < K|fi — fal.

From the fact that the eigenvalues of C\ are the DFT samples

of A(f), iew A (6N) = h(L), it follows that
151115\}/( 2 ’)\l (HN) = Aoy ( )’
< e [ (Cn) = ar (€ )\ (13
A
< _
< i) -] < K

Utilizing the fact that \o(Hy) < maxseo, h(f) and

An-1(Hy) > mingejo 1) h(f) (see Lemma IIL2) and apply-
ing (12) with [ = 0 which gives

Ao (Hn) > A1) (éN) )



we have

1) (03]

Ap(0) (éN) ;
Ap(0) (CN> —Xo (HN)}
Ap(0) (CN)

0 (@)

=max {)\0 (Hy) —

< h
< max { e, (f) -

Ap(0) (CN)
<K,

where the second inequality follows because \; (é'N) are

uniform samples of ﬁ( f) with grid size <. Similarly, we have

’/\N—l (HN) = Ap(N—1) (CN)‘
= max {)‘p(Nfl) (CN) —An—1 (Hn),
Av-t (Hy) = A1) (C) |

gmax{)\ N=1) (CN) — min h(f),

f€lo,1]
Ap(N-2) (5N) = Ap(N-1) (5N)}
ol

Along with (13), we conclude

max |\ (Hy) —

1
< K—.
0<I<N-—1 Ap(t) (CN>‘ - N

Now we consider the case » > 1. Repeatedly applying the
Sturmian separation theorem r times yields

MN(HN) > N([HnINn-r) 2 Nigr(HN),
Ao (Cn) = Xy ([CN]v—r) = A (C)

forall 0 <1 < N —r — 1. Noting that [Hx]|y_, is the same
as [Cn]n—r, we have

N(HN) <N ([HN)N-r) = A ([Cn]n—r)
S)\p(l,r)(éjv), Vi=r,r+1,...,N —1,

N(Hy) >N([Hy|N-r) = )\p(l)([éN]N—r)
>Xp4r)(Cn), Y1=0,1,...,N —7—1

which give

max ‘)\l (Hy) —
r<l<N-r—1

» (On)]
max {\ (Hy) = A, (Cn),
Ao(t) (CN) -\ (HN)}
max { A (G) = Aoy (Cw) -
Ap(l) (CN) Ap(i+7) (éN)}
< 2%,y 0 (C) = M) (i)
< max  ma

n X ‘)\l (C~’N> — N (CNJN)’
1<r<r 0<ISN—1/—1

T
<K—
— N?

= max
r<I<N—r—1

< max
r<I<N-r—1

where the third inequality follows from Lemma C.1. Since

Ar_1(Hy) <+ < Xg(Hy) < max h(f)

f€lo,1]

we bound |\ (Hy) — Ay (5’1\7)

,7" < r —1 by consid-

ering the following two cases: if A, (C~‘N> < A\ (Hp),

we have
A (HN) = Ay (éN)

~ T
<K—:
frg[g)i]h(f) Ap(r—1) (CN) < Ko

if Aoy (Cv) > A (Hw), we have

Ap(r) (CN> Ar (Hy)
<Ap(r) <5N> = Ap(r'41) (éN)
< max ‘)\l (CN) - /\l+r“ <6N>’

1<r/"<r 0<l<N 7”—1

<K—
- N

where the second line follows because A (Hy) >
Ap(r'+41) (CN) and the third line follows from Lemma C.1.
Thus we have

A (HN) = Ap(rry (CN>’ < K%

for all 0 < 7/ < r — 1. Similarly,
‘)\Nfr’ (HN) = Ap(N—r) (éN)‘

< max {)\p(N_T/) éN) - fren[(i)nl] h(f)

Ap(N —r/ 1) (@v) — Ap(N—r7) (CN'zv)}

r
< K— K
_max{ N



for all 1 < ¢’ < r. Therefore,

A (Hy) = A0 (CN>‘ SKT%.

max
0<I<N-1
for all N > 2r.

Note that S,11(f) = Sry2(f) = -+ = Sny—_1(f) which

gives
N—-1 r
neo Sn(f neoOn(f) N—-r—1
UN(f):Z ON ) _ 2 3\[ ( >+ ~ Sr1(f)-
Thus
L _oSa(f) r+1
o () ~ Svr ()] = ]Z =l s )
ZS (1)1 ()] =
N
~0(1)
uniformly on [0, 1] as N — oo. Therefore,
o ax ‘M(CN) - )\Z(CN)’
- ()~ Swa()| = O(xp)
T o1 TN N-LWN/I TN
as N — oo. Finally,
oJFERE1 oo (CN) = M(H)
=, nax Ao (CN) = Ay (CN) + A0y (Cn) — Ni(H)
< a3 (Cn) = A (Cn)|
+ 0<IEN—1 ‘Ap(l)(CN) B AI(HN)’
Sogll%%\)riq M(CnN) = )\I(CN)‘
e @0
1
~0()
as N — oo, where the second inequality follows from
Lemma C.2. [ |

APPENDIX D
PROOF OF THEOREM II1.3

Theorem D.1. (Riemann-Lebesgue theorem [33, Theorem
7.48]) The function g(x) € L™ ([a,b]) is Riemann integrable
over [a,b] if and only if it is continuous almost everywhere in
[a, b].

Despite the fact that F,(c) is right continuous and non-
decreasing everywhere, some stronger results about F,(«) can
be obtained at some point « since g(z) is Riemann integrable.

Lemma D.2. Suppose g(x) : [c,d] — [a,b] is Riemann
integrable and let Fy(«) be defined as in (9). Then Fy(a)
is strictly increasing at « if « € int(essR(g)), i.e., there
exists € > 0 such that, for every pair («,ws) such that
a—e<ay <a<ay<a+te Fylor) < Fyla) < Fyla).

Proof (of Lemma D.2). Since g(z) : [¢,d] — [a,b] is Riemann
integrable and o € int(essR(g)), there exists e such that
(o —€,a+€) CessR(g). Let a; be an arbitrary value such
that a —e < oy < avand let o) = £ € essR(g). It follows
from the definition of essential range that

,u{ac € [e,d] : |g(z) — af| < oz—2al} > 0.
Thus, we obtain

Fy(0) ~ Fylan) = —pfw € [e.d): an < g(x) < )

d u{xe[cd] o < g(x) <a}>0.

Similarly, we have Fy(a) < Fy(ag) fora <as <a+e =

We are now ready to prove the main part using the same
approach that was used to prove Theorem III.1.

1) First, we show that (8) implies (7). This part is the same
as those in Appendix B.

2) Now let us show that (7) implies (8). We prove the
statement (7) = (8) by contradiction. Suppose (8) is not
true, i.e., there exists an increasing sequence {Mk}zozl
and €; > 0 such that

max_|un, | — V1| > 2€1

le[My]
for all & > 1. Let Iy = argmaxe(as,] [Uns,1 — Vs, 1]
denote any point at which |upz, ;1 — var, ;| achieves its
maximum. This implies |upz, 1, — Vg1, | > 2€1. With-
out loss of generality, we suppose Fj is continuous at
Ungy 1y, AN UL 1 S UM s 1€ U 1 S UM 1 260
Otherwise, one can always pick a s, ;, that is close
enough to uyy, ;, and such that F, is continuous at %y,
since F is continuous almost everywhere.
By assumption, uyy, 1, € int(essR(g)). Noting that F,
is right continuous everywhere and strictly increasing at
UM, .1, (Which is shown in Lemma D.2), there exist e >
0 and e3 > 0 such that e < €, Fy is continuous at
UM, 1, T €2, and

Fy(umy i, + €2)
Lemma B.2 indicates that

N[le FuM (a ):Fg(a)

for every point a at which F}; is continuous. Thus there
exists ko € N such that

Lk

= Fy(un, 1, ) + 3e€3. (14)

Ef] (uMka)

Fup,, (ungy iy, + €2) — Fy (unr 1, + 62)‘ <es

FuMk (ul\fk,lk) - <es,

5)




for all k > kg. Thus, we have

Fuy, (ung 1, + €2) — Fuy, (Un, )
= (FuMk (Ungy 1, + €2) — Fyunr, 1, + 62))
+ (Fy(unsy 1, + €2) — Fylunr,1,.))
+ (Fg(UMk,zk) — Fuu, (uMk.,lk))
>Fy(un, 1, +€2) — Fg(unr, 1)

- ELZMk (uMk,lk + €2) — Fg(uMka + 62)’

- ’Fg(uMmlk) - FuMk (ujwk»lk)
>3€3 — €3 — €3 = €3
for all k > kg, where the last line follows from (14) and

(15). Note that the above equation is equivalent to

1
m# {l € [My], unty 1, < Untpr < Unpy1, + €2} > €3.
Then
0 < ungy t—TesMi] — UMyl < UM, 1, T€2— UM, 1), = €2,

which implies

UMyl — WMyl —[es My
vaka = UMy 1, T UMy, lg
>2€1 — €3 > 2€1 — €1 > €1.

= UMyl —[e3 My ]

Now taking ¥(t) = ¢, we obtain

] Met
— ¥ -
A ; [ (g 1) — 9(vag, 1)
1 i
=T S W(uan) = O(var )]
1=l —[e3 My
1 L
Zﬁ Z |7‘9(uMk7l) - ﬁ(kaJk”
k
1=l —[e5 My,
>eze1 >0
for all k¥ > k;. This contradicts Lemma B.1. [ |
APPENDIX E
PROOF OF THEOREM 1.4
sin(w N f)

Lemma E.1. Let Dy(f) := Sn(x f)
kernel. Fix 0 < W < % We have

denote the Dirichlet

1
/ Dy(f)2df =N, ¥ N eN,
0

1-W
/ IDn(F)2df = O(1), when N — oo.
w

Proof (of Lemma E.1). Noting that Dy (f) = sin(rNf) —

omiN N1 sin(7 f)
€ Sy €92 we have

Teiml n=
N-1 N-1
<Z €j27rfn> <Z ej27rfm>
m=0
— Z:lNz:lej%rf (n— m)

n=0 m=0

|DN j27rfn

It follows that

1 N—1N-1

1
/0 |DN(f)|2df:/ Z Z I2mf (n=m) g

n=0 m=0
N—-1N-1

_ Z Z/ ed2mf(n— m)df N.

n=0 m=0

Fix 0 < W < 4. Forany f € [W,1—-W], |[Dn(f)| is bounded

above by W Therefore,

1-w ) =W 1 1
/W [Dn (NI df < /W sin? (7 W) af = sin? (W)

Since h is bounded and Riemann integrable over [0, 1],
it follows from the Riemann-Lebesgue theorem that h is
continuous almost everywhere in [0,1]. Thus we can select
fo €10,1] and a positive number W such that

h(f) — esssuph| < i

holds almost everywhere for |f — fo| < W. For any v € C¥,
we have

(Hyv,v)

= [ W

fot+W _ g~
[ o [,

o fElfo—W, fo+W]

> (et =) [ s

,‘esssuphD / e
fél

0o—W, fo+W]

B()° h(f)df

w(f)* df.
(16)

—max(‘

The DTFT of e;,y is

oI (F~ %)

l
RN

eyn(f) =



F1x h, e and W. If N > =, there always exists [’ such that
fo‘ < W . It follows from Lemma E.1 that

L+¥ =%
[ 1wl oot

=1-o0(1
as N — oo. Note that [%—%,%—i—%] C [fo—=W, fo+W].
Thus there exists N € N such that for all N > max { Ny, 3 }

\/%51//1\/(]0)

2

f0+W ~
af>1-

) €

~

4 ‘ess sup h

el/N
‘\F /

2

df A7)

/ fE[O 1 ‘ fel//N )

f&lfo—W, fo+W]
<

€

2 - max (‘ess infﬁ‘ ,

ess supINzD

Combining (16) and (17) yields

A (Cn) =(Hw )

1 1
—ey /N, ——€y

Z(esssupﬁ—f) 1—% -
4 4‘esssuph’

DO | ™

~ € €2
>esssuph — — +

€
4 4

N

16 ’esssupiNL‘
> ess sup% —€

for all N > max{N,y}. Noting that Ay (Cn) <
)‘p(O) (61\[) < esssup h, we have

‘Ap(O) (Cn) — esssupa <e
for all N > Nj. Since ¢ is arbitrary, we conclude
J\/li_r}noo Ap(0) (6]\;) = esssup h.
With a similar argument, we have
A}i_{noo Ap(N=1) (éN) = essinf h.
Noting that A,y (Cn) < Ao (Hy) < ess suph and

essinfh < Ay_1(Hy) < A\ynv—1)(Cn) (see Lemma II1.2),
we obtain

]\;iinoc Apo) (Cn) = ngnoo Ao (Hy) = esssuph
J\;i_I}loo Ap(Nfl) (61\1) = ngnoo )\N—l (HN) = essinf hA.

APPENDIX F
PROOF OF LEMMA 1V.2

The following result indicates that the main lobe of the
Dirichlet kernel contains most of its energy.

Lemma F.1. Let Dy(f) = Snzvp)

sin(m f)

Then

be the Dirichlet kernel.

/W |Dn (f)? df > 0.45N.
0

Proof (of Lemma F.1 ). Noting that |Dy(f)| =

W_N/

% we have
[ iostorar= [ bm(ﬂffv of
0

N/ﬂ— 1— cos(2f)

|sin(w N f)|
Fn(e /)] =

2
bln

B 1 k+1 2f)
k+1(2ﬂ.)2k 1
s Z 12k — 1)
N 8 (_ )(k+1)(2ﬂ_)2k—1
a (2k)! (2k — 1)

> 0.45N,

where the third line follows from the common Taylor series

cos(2f) = 35o(— )k(22f))2.k.

Suppose NV is a multiple of 4. Note that

Similarly, we have A3n/4(Cn) =

Now for any [ € [N], £ € [0,

n
1 B 2
ﬁez/zv(f) df.
1)|- Thus
DN f— - f

daf



Dy (f — 4) is inside the interval [0, 2] U [2,1]. Thus

A (Ch)

=1/i DN(f—l)2df+1/1 PR
N/ N N Js N
2 [V )

ZN/ |Dn(f)]7df >0.9.

0

Similarly, for any I € [N], & € (3, 2), we have
M(Chw)

L DN<f—l>2df+1/1 PR
N/, N N Js N

<1- %/OW |Dn(f)|? df <0.1.

The proof is completed by noting that 0 < \;(Cy) < 1 for
all I € [N]. ]
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